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ABSTRACT
In this paper, we propose Nutrilyzer, a novel mobile sensing sys-
tem for characterizing the nutrients and detecting adulterants in liq-
uid food with the photoacoustic effect. By listening to the sound
of the intensity modulated light or electromagnetic wave with dif-
ferent wavelengths, our mobile photoacoustic sensing system cap-
tures unique spectra produced by the transmitted and scattered light
while passing through various liquid food. As different liquid foods
with different chemical compositions yield uniquely different spec-
tral signatures, Nutrilyzer’s signal processing and machine learning
algorithm learn to map the photoacoustic signature to various liquid
food characteristics including nutrients and adulterants. We evalu-
ated Nutrilyzer for milk nutrient prediction (i.e., milk protein) and
milk adulterant detection. We have also explored Nutrilyzer for al-
cohol concentration prediction. The Nutrilyzer mobile system con-
sists of an array of 16 LEDs in ultraviolet, visible and near-infrared
region, two piezoelectric sensors and an ARM microcontroller unit,
which are designed and fabricated in a printed circuit board and a
3D printed photoacoustic housing.

CCS Concepts
•Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools; •Applied computing→ Consumer health;

Keywords
Photoacoustic Effect, Ubiquitous Material Sensing, Liquid Food
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1. INTRODUCTION
Food is a fundamental determinant of our health and wellness.

Around the world, we find ourselves facing various chronic dis-
eases and global epidemics including cardiovascular diseases, di-
abetes, malnutrition or obesity, many of which are predominantly
nutrition-related conditions [12]. Moreover, consuming adulterated
food can have a disastrous effect on one’s health and may lead to
serious diseases like cancer, renal failure, loss of vision, etc. In
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order to prevent these chronic diseases, ensuring the quality and
purity of the food that we consume every day is very important.
There are different available techniques to characterize food in-
cluding Raman, NMR spectroscopy, and mass spectrometry-based
technologies [20]. Most of these techniques are typically used in
a laboratory environment. The size, cost and the technical skills
needed for using such technologies are also prohibitive for a real
life application in a mobile environment. A ubiquitous and mo-
bile health technology for characterizing food could have a wide
range of applications and could have a significant impact on en-
suring food security. Imagine a scenario where a mother goes to
the store to pick up milk, she scans the food with her photoacous-
tics mobile phone case and finds out that there are trace amounts
of adulterant in the milk. Similarly, you may want to make sure
whether the freshly-squeezed homemade apple juice contains any
trace amounts of pesticide, which may come from the residual pes-
ticide on the surface of an apple. An affordable, mobile sensing
system, which can characterize nutrients in foods and can detect
adulterants, can not only help users to track the quality of the food
that they are consuming but also help them to ensure the quality
before they purchase the food from the market. Moreover, it can
also act as an indirect pressure to the food producers, processors
and the distributors in the market to ensure the quality of food. In
order to address this, in this study we present Nutrilyzer, a mobile
system for characterizing liquid food via the photoacoustic effect.

The photoacoustic (PA) effect is the generation of a sound wave
due to the optical absorption in a material sample. This effect was
accidentally discovered by Alexander Graham Bell in 1880 while
experimenting with long-distance sound transmission [15]. In this
experiment, when he exposed a solid sample material with a rapidly
interrupted beam of sunlight, an audible sound was produced [16],
which was uniquely different for different solid samples due to dif-
ferent optical absorption. As a result, just by listening to the sound
wave produced by the photoacoustic effect using light with differ-
ent wavelengths, it was possible to detect the solid samples. Since
the discovery of the photoacoustic effect, this concept has been suc-
cessfully used for solid, liquid, and gaseous material characteri-
zation [24, 45, 44]. Photoacoustic sensing techniques have been
explored for various liquid foods and aqueous products character-
ization [35]. Milk and milk-based product have been extensively
studied with photoacoustic spectroscopy using both UV and visi-
ble light [32]. The photoacoustic sensing technique was successful
at predicting iron content in milk protein concentrate [19] and at
detecting whey powder adulterant in skim milk [18].

Although the above-mentioned success of the photoacoustic sens-
ing at liquid food characterization is very encouraging, a traditional
photoacoustic setup containing a broadband light source (or a tun-



able laser), a monochromator, a collimator, a chopper, a photoa-
coustic cell, a highly sensitive acoustic sensor and significant dig-
ital signal processing capabilities (a detailed description is given
in section 2 and 3) is expensive, bulky, and typically confined to
a desktop or benchtop setting. In this study, by replacing the tra-
ditional photoacoustic setup with more affordable electronics and
fabrication techniques, we developed a mobile and low-cost pho-
toacoustic sensing system, which aims to liberate it from the desk-
top or benchtop settings. For example, instead of using a highly ex-
pensive tunable laser or a bulky broadband lamp with a monochro-
mator, we have used an array of LEDs with different center wave-
lengths. Similarly, instead of using a chopper to slice the continu-
ous light beam, we used an ARM microcontroller unit and a digital
transistor circuit to modulate the LEDs sequentially. Lastly, by re-
placing the microphone in a hermetically sealed photoacoustic cell,
we use a highly sensitive piezoelectric sensor to detect the photoa-
coustic effect. In section 3, a detailed discussion justifying each of
our design choices in this mobile photoacoustic sensing system can
be found.

In this paper, we present the design, implementation, and eval-
uation of Nutrilyzer: a mobile photoacoustic sensing system for
characterizing liquid foods. Building on top of the fundamental
theory of the photoacoustic effect with a few step-by-step proof-
of-concept experiments, we demonstrated how an intensity modu-
lated Light Emitting Diode (LED) can generate the photoacoustic
effect on the surface of the electrode of a piezoelectric sensor. We
have also illustrated how a piezoelectric sensor can reliably detect
and record the photoacoustic signal due to the photoacoustic ef-
fect with a high Signal-to-Noise Ratio (SNR). Certain attributes of
the photoacoustic signal (e.g., peak-to-peak distance) are not only
indicative of the optical absorption at the electrode, but also con-
tain information about the interaction between the light wave and
the liquid analyte if the liquid analyte is placed between the LED
and the piezoelectric signal. By varying the wavelengths of the
light, one could capture the photoacoustic spectra due to the pho-
toacoustic effect by the scattered and transmitted light, which can
be used to detect and quantify a certain material in the liquid an-
alyte. This observation is at the heart of Nutrilyzer’s implemen-
tation. Nutrilyzer uses an array of 16 LEDs with wavelengths in
the ultraviolet (UV), visible and near infrared (NIR) range. Using
two brass electrode based piezoelectric sensors, Nutrilyzer captures
the photoacoustic effect by the scattered and transmitted light. An
ARM microcontroller unit modulates the LEDs sequentially and
performs the analog-to-digital conversion of the photoacoustic sig-
nal. All the circuit in the digital and analog front end are fabricated
on a printed circuit board (PCB) and the photoacoustic cell is 3D
printed with Polylactic acid (PLA) filament. The photoacoustic cell
houses two piezoelectric sensors, the LED array, and the cuvette
containing the target analyte liquid food. The two piezoelectric
sensors are positioned in the PA cell around the cuvette such that
they can capture the photoacoustic signal due to the transmitted
and the scattered light. Lastly, by utilizing signal processing and
machine learning algorithms, Nutrilyzer maps the unique signature
in the photoacoustic spectra at both piezoelectric sensors to vari-
ous liquid food characteristics including nutrients and adulterants.
To evaluate the effectiveness of Nutrilyzer, in this paper, we have
developed a model to predict milk protein concentration in whole
milk and to detect a few common milk adulterants. We have also
developed a model to predict alcohol concentration in clear and
colored alcohol.

Specifically, the main contributions of this paper are:

1. Proving the fundamental concept of the theory of photoa-
coustic effect with step-by-step experimentation.

2. Design and Implementation of a low-cost mobile photoa-
coustic sensing system, Nutrilyzer.

3. Validation of Nutrilyzer for liquid color dye solution charac-
terization (both classifiation and concentration prediction).

4. Implementation of the signal processing and machine learn-
ing algorithm for liquid food characterization.

5. Evaluation of Nutrilyzer for milk protein concentration, milk
adulterants, and alcohol concentration characterization.

2. FUNDAMENTALS OF PHOTOACOUSTIC
EFFECT

In the year 1880, Alexander Graham Bell discovered the pho-
toacoustic effect as a byproduct of another experiment on long-
distance sound transmission [15]. In this experiment, when he ex-
posed a solid sample material with a rapidly interrupted beam of
sunlight, a sound was produced [16]. Bell also noticed that the en-
ergy of the sound is correlated to the type of solid material and that
the sound can be produced by the non-visible portion of the solar
spectrum as well. He concluded that this sound is produced by the
absorption of the light energy in the solid samples, which lays the
foundation of photoacoustic spectroscopy. Around the same time,
John Tyndall and Wilhelm Röntgen also found this photoacoustic
effect in gas [43, 36]. Although the underlying physics was devel-
oped in the 1800s, further explorations into various applications of
the photoacoustic effect had to wait for a highly sensitive acous-
tic sensor (e.g., electret, condenser microphone, piezoelectric sen-
sor) and a light source (e.g., LASER, LEDs). Photoacoustic spec-
troscopy became more popular when studies demonstrated the sen-
sitivity of this technique in gas detection [44]. It is useful for sub-
stances in extremely low concentrations because very strong pulses
of light from a laser can be used to increase sensitivity and a very
narrow bandwidth can be used for specificity. The first compre-
hensive theoretical description of the photoacoustic effect in solids
was developed by Rosencwaig and Gersho: the so-called RG the-
ory [38]. Now, let us take a better look at the underlying principles
behind the photoacoustic effect.

2.1 Theory of Photoacoustic Effect
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Figure 1: An overview of the generation and capture of photoa-
coustic signal.

The Photoacoustic (PA) effect is an interesting phenomenon where
an acoustic signal is produced by exposing various solid, liquid,
and gaseous materials with a modulated light wave. In other sim-
pler terms, it is the sound or acoustic signal produced by a blinking
light. The fundamental mechanism behind the generation of the
photoacoustic signal is demonstrated in figure 1. The photoacoustic
(PA) effect starts with a radiation source of a light or more generally
an electromagnetic (EM) wave. When a constant exposure to such
a radiation is applied on the surface of a certain material, three pro-
cesses happen: absorption, reflection, and transmission. In other
words, a fraction of the EM radiation gets absorbed by the mate-
rial. This absorbed energy results in excitation of the molecules,
which is followed by non-radiative de-excitation or relaxation pro-
cesses. The non-radiative de-excitation or relaxation gives rise to



the collisions among molecules and thus an increased thermal ac-
tivity. Now, instead of a constant intensity exposure if the target
material is exposed to a pulsed/modulated radiation of the light (or
EM wave), where the intensity of the radiation will change with a
certain modulation frequency and pulse width (exposure period), a
periodic local heating and cooling is generated within the material.
The periodic increase and decrease of temperature in the material
lead to a periodic local expansion and compression with the same
frequency of modulation. This local change of shape or volume
can be sensed by an acoustic sensor (e.g., condenser, electret mi-
crophone or piezoelectric sensor).

2.2 Piezoelectric Detection of PA Effect
The piezoelectric sensor can quite effectively capture the photoa-

coustic signal produced by the blinking light due to the photoacous-
tic effect. A piezoelectric sensor is typically made with a thin layer
of elastic material (typically called the electrode) that is attached
to a piezoelectric crystal. For example, a brass piezoelectric sensor
consists of a thin metal layer of brass and a piezo crystal cut in the
shape of a disk [1]). Now, if one applies a modulated or blinking
light with a certain wavelength λ, a power P and a modulation fre-
quency ω on the thin layer of metal electrode with a thickness of
l, a photoacoustic signal of Vλ volts will be generated due to the
absorption of the light by the brass (as explained in section 2.1).

Vλ ∝Mαt
1

lρC

P

ω
(1)

Here, M is the coefficient that converts the mechanical strain to
voltage. αt is the optical absorption coefficient of brass. P

ω
is the

optical energy deposited per cycle on the brass layer. 1
ρC

cap-
tures the material characteristic of brass that determines the heat
generation on the brass layer. A detailed theoretical derivation
of this equation can be found in the work by Jackson and Amer
[26]. Equation 1 demonstrates that the total energy of the acous-
tic signal (Vλ) captured by the sensor is proportional to the optical
absorption coefficient (αt) by the material of the electrode. The
total energy of the photoacoustic signal is also dependent on the
wavelength of the EM wave as different wavelength of EM wave
is absorbed by the electrode material differently. Equation 1 also
emphasizes that by maximizing the deposition of the modulated op-
tical radiation, by selecting a material with high optical absorption
and good thermoelastic properties as the electrode, by reducing the
thickness, one could maximize the photoacoustic signal detected
by the piezoelectric sensor due to photoacoustic effect. In section
4, we present the proof-of-concept experiments of photoacoustic
effect with a blinking LED and a brass piezoelectric sensor where
we will experimentally verify this theoretical model in equation 1.

By capturing the photoacoustic effect on the electrode of a piezo-
electric sensor with an array of blinking light sources at wave-
lengths (λ1, λ2, ...λN ) for a certain number of blink-periods, we
can recordN photoacoustic time series (Vλ1(t), Vλ2(t), ...VλN (t)).
By estimating the photoacoustic amplitudes from the raw time se-
ries at all the N wavelengths, we can measure the photoacoustic
spectra [amplitudePAλ1 , amplitudePAλ2 , ...amplitudePAλN ].
In section 4, we will present the detailed signal processing steps
for the conversion from Vλn(t) to amplitudePAλn . Between the
creation of the intensity modulated light wave of a certain wave-
length at the blinking light source and the generation of photoa-
coustic wave, the light wave interacts with the medium along its
path length and the electrode material of the piezo. The light pass-
ing medium could absorb, scatter the light and thus could effect
the transmission of the light on the surface of the piezo electrode,
which would affect the PA spectra. Essentially, the PA spectra con-

tain rich information about how the light wave of a certain wave-
length, after its creation at the blinking light source, is treated by
the medium and the electrode material. As a result, if we place
the liquid analyte between the light source and the piezo electrode
as the medium, the recorded PA spectra will not only capture the
optical absorption by the electrode material but also capture the
optical filtering by the liquid analyte. On the other hand, if we do
not place the liquid analyte between the light source and the piezo
electrode as the medium, the recorded PA spectra will only cap-
ture the optical absorption by the electrode material. By carefully
filtering the PA spectra with the liquid analyte from that of with-
out liquid analyte, we can capture the analyte liquid’s transmission
and scattering characteristics. In this study, we use the analyte liq-
uid food’s transmission and scattering characteristics in the form
of the PA spectra, to model various nutrients (or more generally
chemical compounds) in the liquid food. We will present a detailed
discussion on how we extract the transmission and the scattering
characteristic of the analyte liquid food in section 6.

3. DESIGN CONSIDERATIONS
In order to bridge the gap between the fundamental physics of

photoacoustics to the development of a mobile photoacoustic sens-
ing system, we analyze a few design criteria including the excita-
tion source, wavelength tuning, intensity modulation, acoustic sig-
nal capture, and photoacoustic cell design.

3.1 Excitation Source and Wavelength Tuning
The type of excitation source is one of the most important de-

sign considerations for our system. The signal-to-noise ratio of the
photoacoustic signal increases with the luminescence of the light
source. As a result, the light source needs to be relatively bright.
In order to capture the photoacoustic signal across multiple wave-
lengths, we also need to select a particular wavelength with a band-
width as narrow as possible. Traditionally, high power broadband
light source (e.g., Argon or Xenon lamp) is used in conjunction
with a collimator and a monochromator [37]. While a collimator
increases the brightness of the light by focusing it, a monochroma-
tor selects a narrow band light with a certain center wavelength.
Another alternative is the traditional tunable Q-switched Nd:YAG
pumped OPO, Ti:sapphire or dye laser system [24]. However, both
of these setups are bulky and expensive. They are typically imple-
mented in a desktop or benchtop settings, which is not desirable for
designing a compact, portable and cheap mobile system. To facil-
itate the translation of photoacoustic sensing system from labora-
tory to mobile settings, we need to use a cheaper and more compact
excitation source. Pulsed laser diodes have been explored as an ex-
citation source for different biomedical imaging applications [14,
27]. Although pulsed laser diodes are compact and relatively in-
expensive (typically about $100 USD), the major drawback is that
the pulsed laser diodes come with a limited range of wavelengths to
select from. Another problem is that it requires more sophisticated
(and expensive) acoustic sensing and capture. Although pulsed
laser diode has a modulation frequency in the range of a few Hz,
the pulse width is typically in the range of a few nanoseconds. The
nanosecond-range pulse width further increases the complexity of
the acoustic sensor or microphone. Due to this short pulse width,
the pressure wave can only be sensed and digitized by a highly sen-
sitive ultrasonic microphone and an Analog-to-Digital Conversion
(ADC) with a sampling rate in the ultrasonic range.

As an excitation source, Light Emitting Diodes (LEDs) have sev-
eral advantages over pulsed laser diodes [13]. The LED is a very
cheap (typically< 10 USD) continuous wave light source available
with a wide range of center wavelengths from UV, visible, near



and mid-infrared regions. The high peak power LEDs can easily
meet the high optical energy/brightness requirement of a photoa-
coustic excitation source. Unlike the pulsed laser diodes, which
emit highly focused and collimated light, LED typically emits dif-
fuse light over its angle of operation. An optical lens can easily
correct this shortcoming by focusing the LED light. As every LED
comes with a particular center wavelength, we need to use an ar-
ray of LEDs to capture the spectrum across multiple wavelengths.
Due to the small form factor of surface mounted LEDs available in
the market, one could quite easily put an array of LEDs in a small
Printed Circuit Board (PCB). Considering all these factors we have
decided to use an array of high peak power LEDs (forward current
of about 180 mA) is used in this study.

3.2 Intensity Modulation
In our LED array (excitation source), the intensity of each LED

needs to be separately modulated with a certain modulation fre-
quency and pulse width. Traditionally, mechanical choppers (a fan
with blades) were used to slice the continuous wave light source
[37]. However, it is bulky and noisy, which degrades the signal-
to-noise ratio (SNR) of the photoacoustic signal. An alternative
approach could be to use a transistor as a switch to turn the LEDs
on and off digitally. In order to maintain a constant forward cur-
rent through all the LEDs with different rated forward voltages, we
power each LED by a constant current DC/DC Buck LED driver
[8]. As a result, the brightness or luminance of the LEDs remains
constant and robust against subtle voltage changes of the battery.
By toggling a control digital pin in the LED driver, one can blink
or modulate the LED’s intensity.

3.3 Capturing Photoacoustic Signal
Capturing the photoacoustic signal requires a sensitive acous-

tic sensor (e.g., electret microphones, piezoelectric sensors) in the
infrasonic range, As a low modulation frequency ( < 20 Hz) is
typically used for reliable capture of the photoacoustic signal with
a high SNR. Traditionally, the photoacoustic signal, which is pro-
duced due to the optical absorption and non-radiative de-excitation
of a material, is captured by electret or MEMS microphone in a her-
metically isolated photoacoustic cell filled with nonabsorbing gas
and the target analyte. As the intensity modulated light falls on the
target condensed analyte, heat and pressure waves are generated,
which gets transferred to the gas. With an electret or a MEMS mi-
crophone placed inside the photoacoustic cell, we can measure the
pressure change in the gas. However, the major drawback of this
approach, especially in a mobile setting, is that it requires sophisti-
cated and bulky air-tight and gas-filled photoacoustic cell with ana-
lyte material transport mechanism. Considering all these factors in
this study, we have used a brass piezoelectric sensor [1] to capture
the photoacoustic effect. As mentioned earlier, the intensity mod-
ulated LED gives rise to a local contraction and expansion on the
surface of the piezoelectric sensor’s electrode, which can easily be
recorded by the piezoelectric sensor.

4. PROOF-OF-CONCEPT OF PA EFFECT:
WITH A SINGLE LED

In this section, we outline a few proof of concept laboratory ex-
periments of PA effect using a single excitation source with a LED.
With the step-by-step experimentations, we explored the genera-
tion with an intensity modulated high power LED and the piezo-
electric capture of the photoacoustic signal. We have also explored
the effect of various setup parameters on the PA signal amplitude
including the intensity of the LED, modulation frequency, pulse

width, and the material characteristics of the piezoelectric trans-
ducer’s electrode.

4.1 Generation and Capture of
Photoacoustic Signal

LED

Optical	Lens

Electrode	of	Piezoelectric	Sensor

Piezoelectric	Crystal

Figure 2: The experimental setup of generation and capture of pho-
toacoustic signal.
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Figure 3: The top subplot shows Generation of raw PA signal with
the setup shown in figure 2. The bottom subplot shows the filtered
PA signal and how to estimate PA amplitude.

We have built a simple photoacoustic setup consisting of an LED,
an optical lens, and a piezoelectric sensor, as demonstrated in fig-
ure 2. The LED (Center wavelength of 448 nm, LUXEON Rebel
and LUXEON Rebel ES Colors [4]) is directly attached to an op-
tical lens via a lens tube to collimate and focus the light beam on
the metal plate. The peak forward voltage and current were set to
be respectively 3.3V and 180 mA. We set the distance between the
light source and the metal plate to be 20 mm. As the light beam
falls on the piezoelectric sensor’s brass electrode, the temperature
of the illuminated metal surface increases due to optical absorption.
It leads to a local expansion of the region. Similarly, in the absence
of light, the metal surface cools down and contracts. As the LED
is periodically blinked with a certain modulation frequency, the re-
peated contraction and expansion can be sensed by the piezoelectric
crystal. A detailed and systematic mathematical derivation of the
photoacoustic signal generation on a metal surface with a piezo-
electric signal can be found in [26]. Figure 3 shows the generation
of the PA signal by a modulating LED with a frequency of 4 Hz and
a pulse width of 50% using the setup in figure 2. The top subplot
in figure 3 shows the noisy raw PA signal that was captured with
a Tektronix TDS2024C Oscilloscope. When the LED goes from
0 (off) to 1 (on), the raw PA signal increases. Similarly, the raw
PA signal decreases, as the LED goes from 1 (on) to 0 (off). Also,
notice that the raw PA signal contains a lot of noise. With a simple
moving average filter, we can get rid of most of the high-frequency



noises from the raw signal, as can be seen in the bottom subplot in
figure 3. Lastly, the distance between the peaks and troughs of the
filtered PA signal is used to measure the PA amplitude. The median
of the PA amplitudes (peak to peak distances) over multiple peri-
ods of LED blinks can estimate the optical absorption of the brass
surface of the piezoelectric sensor with respect to the center wave-
length of the LED. Later in section 6.1, we will use multiple LEDs
(array of LEDs) to estimate the photoacoustic signals for multiple
wavelengths, which we call photoacoustic spectra.

4.2 Effect of Setup Parameters on
PA Signal

In this section 4.2, we will analyze how various photoacoustic
setup parameters (e.g., forward current of the LED, modulation fre-
quency, pulse width and thickness of the metal plate) affect the PA
signal generation and capture.

4.2.1 Input Power

Iforward (mA) 70 90 130 180 240 270
PA Ampl (V) 0.66 0.74 0.92 1.44 1.70 1.84

Table 1: With the increase of forward current Iforward through the
LED, the PA signal amplitude increases.

Forward current through the LED determines the brightness or
luminance of the excitation source. As can be seen in Table 1,
the peak-to-peak distance or amplitude of the PA signal increases
with the increase of the forward current Iforward. As the excita-
tion source becomes brighter, the optical absorption in the metal
surface also increases. The temperature rise on the surface of the
piezoelectric sensor’s metal electrode forces it to bend more, which
results in a higher PA signal amplitude captured by the piezoelec-
tric sensor. This result confirms the piezoelectric detection model
in equation 1 that the PA signal Vλ is proportional to the optical
power of LED P .

4.2.2 Modulation Frequency
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Figure 4: With the increase of modulation frequency the signal-to-
noise ratio of the PA signal diminishes.

The modulation frequency plays a very important role in generat-
ing the PA signal. With a low modulation frequency, the light beam
from the LED can excite the transducers electrode (brass disk) for
a longer period of allowing the disk to expand and bend more. As
a result for low modulation frequency, the PA amplitude is high.
With the increase of the modulation frequency, the PA amplitude
decreases. As can be seen in figure 4, between 1 Hz and 10 Hz
the amplitude of the PA signal was significantly higher than that
of the background noise. Once the modulation frequency increases
beyond 10 Hz, the SNR drops very quickly until the PA signal is

lost in the background noise at around 20 Hz. This result confirms
the piezoelectric detection model in equation 1 that the PA signal
Vλ is inversely proportional to the modulation frequency ω.

4.2.3 Pulse Width
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Figure 5: The intensity modulated light with 50% pulse width
yields the PA signal with the highest amplitude.

Pulse width or duration is the percentage of time in a period when
the LED is on. As can be seen in figure 5, pulse width plays a major
role in determining the PA signal amplitude. With very low or very
high pulse width, we fail to achieve a high amplitude PA signal. At
a pulse width lower than 50%, the electrode gets smaller amount of
light to absorb, which results in a smaller expansion. On the other
hand, at a pulse width higher than 50%, the electrode does not get
enough time for compression, which also leads to a smaller PA
signal. As a result, at 50% pulse width, the peak-to-peak distance
of the PA signal is at its maximum.

4.2.4 Diameter of Piezoelectric Transducer
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Figure 6: As the diameter of a piezoelectric disk gets smaller, it
yields higher PA response.

A piezoelectric transducer consists of an electrode, in this case, a
brass metal disk, and a piezoelectric ceramic crystal disk. It comes
in different diameters. In order to select the optimal diameter that
maximizes the photoacoustic signal strength, we compared the PA
amplitude produced by piezoelectric sensors with 5 different diam-
eters using the same setup shown in figure 2. As can be seen in
figure 6, with the decrease of the piezoelectric sensor’s diameter
the PA amplitude increases. This can be quite easily explained by
the fact that smaller plate is easier to bend by the optical absorption
due to the PA effect. The larger plate on the other hand is more
difficult to bend due to its inertia, which leads to the decrease in
the PA signal amplitude. In fact, the same phenomenon can be ob-
served if we add more mass to the surface of the electrode on the
piezoelectric transducer. In order to explore this effect, we increas-
ingly added thin layers of copper tape (thickness of one layer is
0.085mm) to the outer surface of the brass electrode on the trans-
ducer. the PA amplitude drops (as can be seen in figure 7), which is



also observed by other recent studies on photoacoustics [26]. This
result confirms the piezoelectric detection model in equation 1 that
the PA signal Vλ is inversely proportional to the thickness of the
electrode l.
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Figure 7: The PA amplitude decreases with added mass to the elec-
trode of piezoelectric transducer.

4.2.5 Material Characteristics of Piezo Electrode
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Figure 8: Different types of solid materials in the outer surface of
the piezo electrode produced different PA amplitude at different
wavelengths. Brass was the most sensitive to the majority of the
wavelengths of LED light.

In order to explore whether and how the material characteris-
tics of the electrode affect the PA signal, we have attached dif-
ferent materials (aluminum, brass, copper) to the transducers elec-
trode. Figure 8 illustrates the PA amplitude produced by 9 different
LEDs with varying center wavelength in the visible spectrum. The
three materials produced varying PA amplitudes at different wave-
lengths due those three material’s unique optical absorption prop-
erties. This confirms the piezoelectric detection model presented
in equation 1 in section 2.2 that the material characteristics of the
piezo electrode affects the PA signal generation. In this study, we
have selected brass, as it was overall the most sensitive to the ma-
jority of the wavelengths.

From all the above-mentioned experiments, we have learned how
to select the input power of the LED, modulation frequency, pulse
width, piezoelectric transducer diameter in order to maximize the
signal strength of the PA signal, which confirms the piezoelectric
detection model presented in equation 1 in section 2.2. We will use
a high power LED with high forward current and luminous inten-
sity. As the forward current affects the PA amplitude significantly,
it is also very important to drive the LED with a constant current
source. The PA signal amplitude has an inverse relationship with
the modulation frequency. As a result, we want to use a moderately
low modulation frequency with 50% pulse width to generate the
photoacoustic signal. Lastly, we use the thin and small brass disk
as the piezoelectric sensor’s electrode to maximize the PA response.

5. MOBILE SYSTEM IMPLEMENTATION
Design and implementation of a mobile photoacoustic sensing

system is a major challenge that we addressed in this study. Fig-
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Figure 9: The functional block diagram of the proposed mobile
photoacoustic sensing system, Nutrilyzer.

ure 9 is a high-level functional block diagram of the proposed mo-
bile photoacoustic sensing system, Nutrilyzer. In what follows, we
present a detailed description of all the functional blocks.

5.1 ARM Microcontroller
The ARM-microcontroller (commercial name Teensy 3.1 [10]),

which is at the heart of the mobile system, has three major respon-
sibilities. Firstly, it interacts with the constant current Buck LED
driver to control the LED array (excitation source). The ARM mi-
crocontroller modulates the intensity of each LED separately with a
certain modulation frequency. Each LED in the array is blinked for
a predefined number of periods until it moves to the next LED. Sec-
ondly, while the LEDs are intensity modulated, the internal ADC of
the microcontroller converts the analog, amplified and filtered PA
signal to a digital signal. Lastly, after the analog to digital conver-
sion and preprocessing, it passes the data to the phone for running
further signal processing, machine learning (ML) algorithms and
for displaying the results. We use the microcontroller’s internal
ADC for converting the output analog signal from the signal condi-
tioning circuit to a 16-bit digital signal with a sampling frequency
of 1000 Hz. As the low modulation frequency signal generates in-
frasonic PA signal (less than 20 Hz), our sampling frequency of
1000 Hz satisfies the Nyquist criteria.

5.2 LED Array and Driver
We have designed a LED array containing 16 LEDs with cen-

ter wavelengths in the ultraviolet (UV), visible and near-infrared
(NIR) range. Table 2 lists all the 16 LEDs with their respective
color, center wavelength λ and forward current rating If . We know
from section 4.2 that the PA amplitude increases with the increase
of radiant power, which is typically proportional to the rated for-
ward current. As a result, we have chosen a set of relatively high
power LEDs in the UV, visible and near-infrared (NIR) range with
rated forward current from 100 to 1000 mA. The power rating of
the LEDs will primarily determine the total power consumption of
our Nutrilyzer system. As a result, LEDs that generates high irra-
diance with less forward current will certainly enhance the power
efficiency of the overall system. Luxeon Rebel, Luxeon Rebel ES
Colors and Luxeon Z color line offers a set of visible light high
power LEDs that meets our requirements [4, 3, 5]. Most of the
off-the-shelf UV LEDs come with a low power setting. However,
we have selected two UV LEDs [6] from Luxeon Z UV line with
center wavelengths of 385 and 395 nm. Lastly, we have included
four LEDs with center wavelengths in the NIR range (respectively,
745, 830, 850 and 940 nm).

In order to capture the PA amplitude with all these LEDs, each
LED is separately modulated or blinked 15 times before it goes to
the next LED. As the LEDs’ forward current rating is relatively
high and the ARM microcontroller’s pin out can not supply high
current, each LED in the LED array is separately powered by a



Ind Part Num Color λ If
(nm) (mA)

1 LHUV 0385 [6] UV 385 500
2 LHUV 0395 [6] UV 395 500
3 PR01 0500 [4] Royal Blue 448 1000
4 PB01 0040 [4] Blue 470 1000
5 PE01 0050 [4] Cyan 505 1000
6 PM01 0090 [4] Green 530 1000
7 LXZ1 PX01 [5] Lime 568 1000
8 PL01 0060 [4] Amber 590 700
9 LXM3 PW71 [3] White - 700
10 PH01 0060 [4] Red Orange 617 700
11 PD01 0050 [4] Red 627 700
12 LXM3 PD01 [4] Deep Red 655 700
13 ELSH Q61F1 NIR 745 100
14 VSMF 2700 GS08 NIR 830 100
15 VSMY 2850 RG NIR 850 100
16 SFH 4441 NIR 940 100

Table 2: The part number, color, wavelength and rated forward
current of the LEDs in our LED array.

constant current DC/DC Buck LED driver [8], which is connected
to a 8 volt DC supply. Essentially the LED driver converts the DC
power source to a constant current supply of 180 mA. The LED
driver also allows us to modulate the intensity of each LED indi-
vidually. We use a modulation frequency of 2 Hz and a pulse width
of 50%, as discussed in section 4.2.2 and 4.2.3

5.3 Piezoelectric Sensor and
Signal Conditioning

Figure 10: Opamp-based signal conditioning circuit.

The piezoelectric sensor (Brass piezo disk sensors [1]) generates
a very low voltage signal in response to the PA effect. Moreover,
the piezoelectric sensor has a much higher output impedance than
the input impedance of the analog input pin of the ARM microcon-
troller. As a result, the raw PA signal needs proper signal condition-
ing (i.e., amplification and impedance matching) before the analog
pin of the ARM microcontroller can run the analog-to-digital con-
version. Our opamp-based signal conditioning circuit (in figure 10)
addresses these issues. Because of the high impedance of the piezo-
electric sensor, we used a high-input impedance JFET or CMOS
input opamp. In this particular implementation, we have used a
CMOS Rail-to-Rail operational amplifier TLV2772 [2]. By using
the appropriate values of Rb, Rf , Rg and Cf (as shown in figure
10), we amplify the weak raw PA signal by a factor of 11. We sup-
ply a regulated 3.3 Volts to the V CC of the opamp. Lastly, to shift
the amplified and signal conditioned PA signal within the dynamic
range of the ADC of the microcontroller, we provide an additional
V CC/2 from the first opamp’s output to the second opamp’s cir-
cuit. The output of the opamp circuit is connected to an analog pin

of the microcontroller for analog-to-digital conversion.

5.4 Photoacoustic Cell

Figure 11: The side view of the photoacoustic cell.

The photoacoustic cell consists of a piezoelectric sensor, opti-
cal lens, the target analyte material, and a 3D printed light tunnel
that encapsulates the LED array to prevent external light from in-
fluencing the PA signal and prevents the light from hitting anything
other than the target analyte material (figure 11). The dimension
of the PA cell is respectively 12 x 12 x 40 mm. The inside of the
cell is spray-painted matte black so that the wall of the PA cell
equally absorbs all the different wavelengths emitted by the LED
array. We use cuvette as a container for the analyte liquid. We
used a UV grade cuvette that allows light in UV, visible and NIR to
pass through it. The volume and path length of the cuvette was 4.5
ml and 10 mm. The inner dimension of the PA cell was designed
such that it will hold the cuvette in a firm and stable manner. Once
the target material is deposited in the cuvette to be analyzed, we
place the cuvette inside the PA cell. The PA cell is closed so that
no external light can get into the cell. In order to prevent external
sound/vibrations from introducing noise into the PA signal, we at-
tached layers of soft silicone rubber to the bottom of the PA cell to
provide acoustic isolation for the piezoelectric sensors. As can be
seen in figure 11, the PA cell also holds two piezoelectric sensors.
Piezo 1 is placed facing the LED array, while Piezo 2 is perpen-
dicular to Piezo 1. Piezo 1 is positioned such that it can capture
the PA signal by the transmitted light, while Piezo 2 is positioned
to capture the PA signal of the scattered light by the analyte liquid
solution. We will talk about the functionalities of the Piezo 1 and
Piezo 2 in a more detailed manner in section 6.

5.5 Fabrication and Design
To build a robust, mobile PA system, we used several different

materials and fabrication and design techniques. The LED array
and driver circuit were fabricated in-house with our PCB milling
machine on a 1 oz copper clad FR4 double-sided board. Figure 12
illustrates all the electronic components. The main board contains
the LED array, an array of LED drivers and the ARM microcon-
troller. We have a separate board that contains the analog front
end signal conditioning circuit for the piezoelectric sensors (Piezo
1 and Piezo 2). These boards are connected with each other by
ribbon cables. Lastly, the system is powered by 3 LiPo batteries
connected in series. The light tunnel and housing, which holds the
microcontroller, LED array, LED drivers, signal conditioning cir-
cuit, and photoacoustic cell were 3D printed using Polylactic acid
(PLA) filament. It was spray-painted matte black and mounted on
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Figure 12: All the electronic components used in our photoacoustic
sensing system.

top of soft silicone rubber for acoustic isolation. Figure 13 shows
the front view of our proposed PA sensing system, Nutrilyzer.

Figure 13: Front view of our PA sensing system with electonics
mounted in housing.

6. CHARACTERIZING COLORS WITH
NUTRILYZER

In this section, we put our proposed Nutrilyzer system to test.
As the first proof-of-concept experiment with the full Nutrilyzer
system, we explore whether we can at first classify the colors of
different color dye solution in water. Later, we estimated the pre-
dictability of the color dye concentration in dye-water solutions.

6.1 Classifying Color Dye-Water Solutions
As the LEDs are sequentially intensity modulated or blinked, the

light beam transmits through the light tunnel, the analyte solution
in the cuvette and the wall of the cuvette before it hits the metal
plate surface of Piezo 1 sitting diagonally across the LED array. As
the light beam tries to penetrate through the analyte liquid solution,
some part of the light beam also gets scattered and hits the Piezo 2,
which is in the side wall of our PA cell (as explained in section 5.4).
The top plot in subfigure 14a shows the PA signal of the Piezo 1,
while the top plot in figure 14b shows the PA signal of the Piezo 2.
In order to estimate the PA spectra of both Piezo 1 and Piezo 2, we
at first estimate the peaks and troughs of the PA signals. Then we
estimate the running peak to peak distance (the distance between
consecutive peak and trough), which we call PA amplitude. The
bottom plot in subfigure 14a and 14b shows the running PA am-
plitude over time. In these two subfigures, we can also observe
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Figure 14: demonstrates how the PA signal is produced by the in-
tensity modulated LEDs and how we process the PA signal and
estimate the PA spectra from both (a) piezo 1 and (b) piezo 2. Top
subfigure of both (a) and (b) shows the peaks and troughs of the
filtered PA signal. Bottom subfigure of both a and b shows the
PA amplitude or distance between the peaks and troughs of the PA
signal over time.

a distinct transient response in the running PA amplitude of both
Piezo 1 and 2. This transient response is marked by an overshoot
or an undershoot in the PA amplitude while moving between two
consecutive LEDs (Every LED is blinked 15 times). This transient
response happens only for a few periods of blinks until the ampli-
tude of the PA signal reaches its steady state. By estimating the
median of the PA amplitude values estimated across the duration of
each LED, we can avoid the transient PA amplitude values and can
robustly estimate the true PA amplitude of Piezo 1 and 2 individu-
ally. Thus by measuring the median value of PA amplitude values
of Piezo 1 and 2 for each LED separately, we can estimate the PA
spectra of both Piezo 1 and 2 across all the wavelengths (or LEDs).
Lastly, we normalize the spectra with respect to the PA spectra
recorded with an empty cuvette in the system. If the PA amplitude
or peak-to-peak distance of target analyte liquid solution and the
empty cuvette in λ wavelength is respectively amplitudePA(λ)
and amplitudePAEmptyCuvette(λ), using equation 2 we can es-
timate the normalized PA spectra.

NormalizedPAS =
amplitudePA(λ)

amplitudePAEmptyCuvette(λ)
(2)

By comparing the PA amplitudes for different LEDs (or at dif-
ferent wavelengths) of Piezo 1 (in figure 14a) and Piezo 2 (in figure
14b), one could easily notice that the PA amplitudes are different
in both magnitude and pattern. For example, the PA amplitudes of
Piezo 1 for different LEDs are much higher in magnitude than that
of Piezo 2. Moreover, the PA amplitude of Piezo 1 for the third
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Figure 15: Normalized Photoacoustic Spectra of different color
dye-water solutions. Each bar represents the normalized PA am-
plitude by a particular LED with a certain center frequency.

LED captures a much stronger response than that of the two neigh-
boring LEDs (i.e., second and fourth LED in figure 14). The Piezo
1 captures the transmitted light, while the Piezo 2 is positioned to
get the scattered light. As a result, the PA amplitudes of the Piezo
1 and 2 are respectively due to the transmitted and scattered light.
For a certain wavelength of light, a particular analyte liquid solution
may appear to be transparent and may allow a higher light transmit-
tance, which would give rise to a higher PA amplitude of Piezo 1.
For some other wavelength, the analyte liquid solution may be rel-
atively opaque, which in turn may give rise to a higher amount of
scattered light. The higher level of scattering would give rise to a
higher PA amplitude of Piezo 2. Thus, theoretically, the PA spectra
of Piezo 1 and 2 contains a lot of complementary information about
the target liquid solution, which could help to characterize differ-
ent material properties of the liquid. In section 6.2 with the help
of some experimental result we will illustrate how with these two
piezoelectric sensor captures transmitted and scattered light sepa-
rately and how the PA amplitudes from these two piezoelectric sen-
sors contain complementary information about the liquid analyte.

Figure 15 shows the normalized photoacoustic spectra of Piezo
1 (top row) and Piezo 2 (bottom row) for the four different color
dye-water solutions as the target liquid analytes. As can be seen in
figure 15, the PA spectra due to the transmitted and scattered light
is uniquely different for different color dye-water solutions. In the
spectra the first bar in white corresponds to the white LED, which
is made of two wavelengths. All the rest of the bars corresponds
to the PA amplitude by the LEDs with one particular wavelength
in UV, visible and NIR region. If we focus on the visible region of
the spectra in figure 15, we can quite easily find that the PA am-
plitude by the red LEDs is higher for red color dye-water solution.
Similarly, in the visible region the green dye solution gives rise to
a high value of the PA aplitude corresondig to the green LEDs. It
demonstrates the discriminative capabilities of PA spectra of dif-
ferent color dyes. Also notice that the PA amplitudes at Piezo 2 is
much higher than that of Piezo 1, because the dye-water solutions
give rise to a higher scattering and the transmitted light is smaller
than the scattered light. In next subsection 6.2, we will predict the
concentration of a color dye in water. We will also have a more
involved discussion on the relationship between the PA amplitude
of Piezo 1 and Piezo 2 in section 6.2.

6.2 Predicting Color Dye Concentration in
Dye-Water Solution

Water 0.05	%	
Blue	Dye

0.01	%	
Blue	Dye

0.001	%	
Blue	Dye

Figure 16: The 4 blue color dye solutions in water with concentra-
tions of 0%, 0.05%, 0.001% and 0.0001%.

Whether our PA sensing system can predict or detect the con-
centration of a color dye was the next question that we asked in this
study. We have prepared 4 different solutions by diluting blue color
dye in water, as can be seen in figure 16. The concentration of the
blue dye in these 4 solutions were respectively 0%, 0.001%, 0.01%
and 0.05%.

(a)

(b)

Figure 17: a scatter plot between the PA amplitudes of (a) Piezo 1
and (b) Piezo 2 by the Blue LED (center wavelength of 470 nm)
and the Cyan LED (center wavelength of 505 nm).

We ran 3 independent trials with our system for each of these 4
analyte solutions. As blue colored LEDs can maximally pick up
the change in concentration of blue color dye solutions, in figure
17 let us inspect the two scatter plots between PA amplitude of the
blue LED (center wavelength of 470 nm) and the cyan LED (center
wavelength of 505 nm). The subfigure 17a corresponds to the PA
amplitudes of Piezo 1. As can be seen in the scatter plot 17a, with
the increase in concentration of the solution, less blue light could
pass through the solution in the cuvette and as a result less intensity
modulated blue light beam reaches the surface of the piezoelectric
sensor (Piezo 1). As more and more blue light gets reflected or scat-
tered, it generates increasingly lower PA amplitude at the surface



of the brass piezoelectric sensor. Now if we inspect the subfigure
17b to analyze the scattered cyan and blue light’s PA response at
respectively 505 and 470 nm, we can observe that water or 0% blue
dye generates the least amount of PA amplitude in Piezo 2. Water
allows the light beam from both blue and cyan LED to pass without
much (very little) scattering. As a result, the PA amplitude by the
scattered light is also very small. We can also observe a significant
increase in PA amplitude at Piezo 2 for 0.001% blue dye solution
from the water. The added blue dye in water leads to a higher level
of scattering which increases the PA amplitude at Piezo 2. Now,
as we add even more blue dye to make the 0.05% blue dye solu-
tion, the PA amplitude of Piezo 2 by both LEDs decreases from
that of 0.01%. The rationale behind this is that a much higher con-
centration of blue dye in water leads to higher reflection of blue
light, which decreases the scattered light. These two scatter plot
also shows that PA spectra of Piezo 1 and 2 contain complemen-
tary information about the target liquid analyte solution.

Now, leveraging the PA amplitudes of Piezo 1 and Piezo 2 by
these two LEDs, we can predict the blue dye concentration in wa-
ter. By training a neural network on the PA amplitude of these
two LEDs only and then by running a leave-one-trial-out cross-
validation experiment, we can reach a correlation coefficient of
0.9801, a mean absolute error of 3.54, a root mean square error of
4.29 and a root relative squared error of 14%. From this result, we
can conclude that our system can characterize the color dye even
with relatively very low concentrations.

7. CHARACTERIZING LIQUID FOOD AND
DRINK WITH NUTRILYZER

In this section, we will present three feasibility experiments with
Nutrilyzer in the context of liquid foods and drinks characteriza-
tion. Firstly, we will illustrate how we can predict milk protein
concentration. Secondly, we will discuss how we can detect a few
different types of common milk adulterants with Nutrilyzer. Lastly,
we explored if our system can potentially be used to characterize
other liquid food and drink beyond milk such as alcohol.

7.1 Characterizing Milk Protein
Milk protein is one of the most important nutrients that is found

in milk. In order to explore if our Nutrilyzer system can predict the
concentration of protein in milk, we ran a feasibility experiment.

Figure 18: Milk protein concentration prediction in whole milk.

At first, we prepared 4 different milk solutions with 4 different
amount of Milk Protein Concentrates (MPCs). MPC contain both
casein and whey proteins in the same or similar ratio as milk [33].
As a result, MPC can emulate the protein that is found in milk. We
started with whole milk, which contains 0.33 grams of milk protein
in 10 ml of milk [9]. In order to vary the milk protein concentration,
we have added 0.3750, 0.75 and 1.5 grams of MPC (by Idaho milk

product [7]) to 10 ml of whole milk. Thus we have prepared four
10 ml milk solutions with respectively 0.33, 0.705, 1.08 and 1.83
grams of milk protein.

Now, in order to test the predictability of milk protein concentra-
tions, we ran 3 independent trials (by replacing the cuvette and the
analyte solution) with each of the 4 milk solutions with our system.
We used two PA spectra from both piezoelectric sensors to model
a neural network to predict the amount of milk protein (in grams).
From a leave-one-trial-out cross-validation, we found that with the
PA spectra from both Piezos contains enough information to predict
the milk protein in whole milk and the neural network achieved a
Pearson correlation coefficient of 0.9063, a root mean squared er-
ror of 0.2468 and a root relative squared error of 16.7955%. The
result shows that the proposed PAS system can successfully predict
the milk protein concentration with a reasonable accuracy. Figure
18 illustrates a bar chart of the predicted milk protein (in grams)
with respect to the actual amount. We can observe a linear relation-
ship between the actual and predicted milk protein concentration
(in grams per 10 ml). The neural network trained on the PA spectra
could capture these 4 different milk protein concentration in whole
milk with high confidence.

7.2 Characterizing Adulterants in Milk
Milk adulteration is a crucial problem in different parts of the

world. As milk is a common ingredient for processing or prepar-
ing other foods and is more commonly consumed by the younger
members of our society, adulteration of milk is a serious health
hazard. As our second feasibility experiment, we explored if Nutri-
lyzer can detect and classify a few common milk adulterants. For
this study, we considered four common milk adulterants: detergent,
salt, starch, and water [40]. As can be seen in table 3, We have pre-
pared 5 different Milk-Adulterant solutions in this experiment with
the 4 type of adulterants. In 20 ml of whole milk, we have sepa-
rately added 1.5 grams of starch, 1.5 grams of salt, 2 ml of liquid
detergent and 2 ml of water. We have taken pure (100%) whole
milk as baseline class.

Milk-Adulterant Solution Recipe
Milk 100% whole milk (no adulterant)

Milk + Detergent 2 ml in 20 ml milk
Milk + Salt 1.5 grams in 20 ml milk

Milk + Starch 1.5 grams in 20 ml milk
Milk + Water 2 ml in 20 ml milk

Table 3: The list of the 5 different Milk-Adulterant solutions along
with the recipes.

Now, in order to test the classifiability of these Milk-Adulterant
solutions with our Nutrilyzer system, we ran 3 independent trials
(by replacing the cuvette and the analyte solution) with each of
the 5 milk solutions (as listed in table 3). In total, we have gath-
ered photoacoustic spectral data from both piezoelectric transduc-
ers from 15 trials. The PA spectra is normalized by the spectra
captured with an empty cuvette in the PA cell. We trained a neural
network with the top feature subset selected by correlation-based
feature selection (CFS) [23] and ran a leave-one-trial-out cross val-
idation. The feature selection selected 4 features from the PA am-
plitude of Piezo 2. It is very interesting that for both milk protein
concentration prediction and milk adulterant classification, most
of the top selected features were PA amplitude of Piezo 2 at dif-
ferent wavelengths. Both adulterated and protein milk solutions
are opaque and contain a lot of colloidal particles with different
shape and size. Colloidal particles are typically much bigger in
size, which is in the range of the wavelength that we considered in



this study (roughly). As the light travels the 10 mm path through
the analyte milk solution, the colloidal particles scatter the light.
This colloidal particle scattering is also known as Tyndall scatter-
ing [11]. Due to the heavy colloidal particle scattering, Piezo 2 gets
a relatively stronger light beam, which gives rise to higher PA am-
plitude in Piezo 2. Due to the same reason, very little amount of
low-intensity unscattered light can reach Piezo 1, which can only
produce very small PA amplitude. The PA amplitude at Piezo 2
captures the characteristic colloidal particle scattering with a much
higher signal to noise ratio than that of Piezo 1. As a result, the
feature selection algorithm picked PA amplitudes at Piezo 2 as the
top selected features.

Figure 19 demonstrates the scatter plot between two top selected
features for milk adulterant classification: PA amplitude of Piezo
2 at 655 nm and PA amplitude of Piezo 2 at 448 nm. As can be
seen in figure 19, all the classes are well separated except the milk
with water slightly overlapping with salt. Also, notice that pure
milk is distinctly far from all the adulterated liquid whole milk in
figure 19, which shows that we can quite easily detect if the milk
is adulterated or not. From a leave-one-trial-out cross-validation
experiment with the top selected features trained neural network
yields a performance of 80% recall and 78.5% of F-score when we
try to classify among all the 5 classes including pure milk, milk
with water, milk with salt, milk with starch, milk with detergent.

Figure 19: Scatter plot between two top discriminative features for
milk adulterant classification.

7.3 Characterizing Alcohol Concentration
In this experiment, we explored if we can characterize the alco-

hol concentration in an alcoholic drink. In order to vary the alcohol
concentration, we started from an alcoholic drink (Rum) with rel-
atively high alcohol concentration (85%) and diluted the alcoholic
drink (rum) with water. Thus we have prepared 6 different solu-
tions with 100%, 80%, 60%, 40%, 20% Rum and water (0% Rum).
Each solution was applied in the cuvette 3 times independently and
we have gathered photoacoustic spectral data from 18 trials in to-
tal. All the PA spectra is normalized by the spectra captured with an
empty cuvette in the PA cell. In order to model Rum concentration,
we trained a neural network with the top feature subset selected by
CFS feature selection [23] and ran a leave-one-trial-out cross val-
idation. The feature selection selected both Piezo 1 and Piezo 2
PA amplitude. The top feature subset also includes the PA ampli-
tude of Piezo 1 at 505 nm and Piezo 2 at 850 nm. In figure 20,
you can visualize the error bars of the predicted Rum concentra-
tion with respect to the actual concentration. Our neural network
achieves a Pearson correlation coefficient of 0.99, a mean absolute
error of 2.01, an RMS error of 2.84 and a root relative squared error
of 7.87%, which indicates that Nutrilyzer could capture the concen-
tration of the alcoholic drink (Rum) with relatively high accuracy.

In addition to predicting the concentration of Rum, which is

Figure 20: Predicting alcoholic drink (Rum) concentration in water.

slightly brownish in color, we also tried to predict the alcohol con-
centration of a clear (or colorless) alcoholic drink. As Rum has a
brown color tone, the color tone will drop as it gets diluted in water.
It has helped the regression model to achieve a good prediction. To
answer this question, we have conducted another experiment with
95% clear alcohol, where we have again prepared 6 different so-
lutions with 100%, 80%, 60%, 40%, 20% clear alcohol and water
(0% clear alcohol). Each solution was applied in the cuvette 3 times
independently and in total we have gathered photoacoustic spectral
data from 18 trials. For clear alcohol concentration prediction, the
top feature is selected to be the PA amplitude of Piezo 1 at 940
nm. Figure 21 shows the PA amplitude of Piezo 1 for all the dif-
ferent clear alcohol concentrations in water. As we add more clear
alcoholic drink to the water, the solution let more NIR light pass
through it in the cuvette. As a result, more light hits the Piezo 1,
which increases the PA amplitude. The performance of the neural
network trained on the top features reaches a Pearson correlation
coefficient of 0.91, a mean absolute error of 11.58, a RMS error
of 15.23 and root relative squared error of 42.13%. Comparing the
prediction result of the clear alcohol concentration prediction with
the colored alcohol (Rum) concentration prediction, we can realize
that the performance significantly dropped. This is due to the fact
that our LED array does not capture various other wavelength in the
near infrared and mid infrared regions which could be more benefi-
cial for our system. In future by adding more LEDs with important
wavelength, one could further boost the performance of the alcohol
concentration prediction.
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Figure 21: Near Infrared LED with center wavelength of 940 nm
can capture the concentration of a clear alcoholic drink in water.

8. RELATED WORK

8.1 Photoacoustic Sensing Technique
The photoacoustic effect was an accidental discovery by Alexan-

der Graham Bell in the year 1880 when he was experimenting



on long-distance sound transmission [16]. Around that time other
physicists including John Tyndall and Wilhelm Röntgen also found
this photoacoustic effect in gas [43, 36]. Alexander Graham Bell
also demonstrated that with a rapidly interrupted beam of sunlight
one could characterize solid sample material, even by the non-
visible portion of the solar spectrum. However, the lack of highly
sensitive acoustic sensor and wavelength tunable high power exci-
tation source were the major bottlenecks towards widespread adop-
tion of this technology. As the acoustic sensor and excitation source
become respectively more sensitive and efficient, trace gas charac-
terization was one of the first applications that used the photoa-
coustic effect [44, 39]. It is useful for substances in extremely low
concentrations because very strong pulses of light from a laser can
be used to increase sensitivity and very narrow bandwidth can be
used for specificity. The first comprehensive theoretical description
of the photoacoustic effect in solids was developed by Rosencwaig
and Gersho in 1976 [38].

The piezoelectric sensor came into the realm of photoacoustic
effect and spectroscopy, as it could directly capture the expansion
and the compression of the photoacoustic effect directly from the
target material. As a result, it obviates the need for an airtight, her-
metically isolated photoacoustic chamber or cell. Another major
advantage of the piezoelectric sensor is that it has a wide frequency
response range (from a few Hz to many MHz), as a result, it can
capture a broad range of photoacoustic temperatures and pressure
wave. A detailed discussion on the piezoelectric sensor based pho-
toacoustic effect can be found in [26, 45]. Piezoelectric photoa-
coustic effect has been used for characterizing solid [26, 34], liquid
[29, 25] and gas [28].

8.2 Liquid Food Characterization
Photoacoustic sensing techniques have been explored for a wide

variety of application scenario [42]. Especially, liquid material
characterization using photoacoustic sensing has been studied in
the context of different domain problems including biological sys-
tem characterization [17], probing red blood cell morphology [41],
and glucose testing [31]. Several recent studies used photoacous-
tic sensing technique to detect water pollution, such as Chromium
contamination in water [30], trace oil detection in water [21]. A
few recent studies also explore photoacoustic sensing techniques
for liquid food characterization. Ravishankar and Jones used pho-
toacoustic emission measurements to differentiate various liquid-
based food and aqueous products [35]. This study has also modeled
percentage of milk in water with photoacoustics. Milk and milk-
based product have been extensively studied with photoacoustic
spectroscopy using both UV and visible light [32]. The photoa-
coustic sensing technique was successful in predicting iron content
in milk protein concentrate [19]. Milk adulteration was another in-
teresting problem where the photoacoustic sensing technique was
found to be useful. A recent study demonstrated that using the pho-
toacoustic amplitude produced by visible range light could detect
whey powder adulterant in skim milk [18]. In addition to the pho-
toacoustic sensing, hyperspectral imaging is also proposed in the
context of food characterization [22].

9. LIMITATIONS AND FUTURE WORK
Although Nutrilyzer shows great promise for mobile characteri-

zation of liquid foods and drinks, it is not without limitations. Al-
though this paper has explored the feasibility of a photoacoustic
effect based sensing system for milk and alcohol characterization,
the potential generalizability of this approach for various other nu-
trient (or more generally chemical compounds) characterization of
a wider variety of foods and drinks still remains an open question.

In other words, the question is how such a mobile system prototype
like Nutrilyzer could potentially be extended for other types of liq-
uid food or drink characterization. In order Nutrilyzer to detect
other nutrients in some other type of liquid food or drink, we need
to target the relatively unique part of the transmission or diffuse
reflectance spectra and incorporate EM sources in that wavelength
range. By incorporating more interesting and relevant wavelengths
for a certain liquid food characterization problem, one could extend
our system to other types of liquids. For example, for liquid alcohol
concentration measurement, adding multiple EM sources between
1000 nm and 2400 nm could further boost the performance. One
of the main bottlenecks of Nutrilyzer for achieving the generaliz-
ability to other types of liquids is rooted in the fact that we have
only used a limited number of LEDs with certain wavelengths in
UV, visible and shortwave NIR range. Unfortunately, the LEDs are
not made at arbitrary wavelengths. The cost of a tunable laser is
prohibitive to widespread adoption of such technology, which goes
against the philosophy of making such a system mobile and ubiqui-
tous. One way to tackle the problem could be to use optical filters
in front of an LED to create various narrow bands. By capturing
the PA amplitude at multiple interesting and relevant wavelengths
could enable us to robustly capture subtle material attributes (e.g.,
concentration and material types) in other types of liquids.

Another interesting area for further exploration is improving the
acoustic sensor. As future acoustic sensors will be even more sen-
sitive, this will enable photoacoustic signal detection with a much
higher SNR. We also plan to collect more data with various liquid
foods in different settings to make the signal processing and pre-
diction algorithm more robust. In the future, we plan to deploy our
Nutrilyzer system in the wild in order to explore its applicability for
low-cost liquid food characterization in the context of food safety
and security.

10. CONCLUSION
In this paper, we have described the design, implementation, and

evaluation of Nutrilyzer - a photoacoustic sensing system that can
characterize various types of liquid food. Nutrilyzer uses an ar-
ray of LED, two piezoelectric sensors and an ARM microcontroller
unit to capture the photoacoustic signal of both the transmitted and
scattered light beam in the target liquid food solution in a cuvette.
The unique spectral signature captured by these two piezoelectric
sensors across all the 16 LEDs in our LED array enable us to cap-
ture the optical transmission and scattering properties, which even-
tually leads us to detect nutrient and adulterants in liquid food. We
have validated the feasibility of Nutrilyzer in three experiments
with three different liquid foods. We demonstrated that we can
predict the concentration of milk protein with a correlation coeffi-
cient of 0.90 and root relative squared error of 16%. We have also
achieved 80% recall when we tried to classify various adulterants.
With our limited number of LEDs in our LED array, we can quite
easily predict the concentration of a colored alcohol (e.g., Rum with
slightly brown tone) with a correlation coefficient of 0.99 and a root
relative squared error of 7.87%. However, the performance drops
significantly, when it comes to predicting clear alcohol concentra-
tion. In terms of correlation coefficient and root relative squared
error the performance reaches respectively 0.91 and 42.13%.
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