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ABSTRACT
We often think of ourselves as individuals with steady capa-
bilities. However, converging strands of research indicate that
this is not the case. Our biochemistry varies significantly over
the course of a 24 hour period. Consequently our levels of
alertness, productivity, physical activity, and even sensitivity
to pain fluctuate throughout the day. This offers a consid-
erable opportunity for the UbiComp community to identify
novel measurements and interventions that can leverage these
daily variations. To illustrate this potential, we present re-
sults from an empirical study with 9 participants over 97 days
investigating whether such variations manifest in low-level
smartphone use, focusing on daily rhythms related to sleep.
Our findings demonstrate that phone usage patterns can be
used to detect and predict individual daily variations indica-
tive of temporal preference, sleep duration, and deprivation.
We also identify opportunities and challenges for measuring
and enhancing well-being using these simple and effective
markers of circadian rhythms.
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INTRODUCTION
Like nearly every organism on Earth, we have evolved to live
in light and sleep in darkness. Within our bodies there are
hundreds of biological clocks, controlled by a “master clock”
in our brain — the Suprachiasmatic Nucleus or SCN [17].
These body clocks vary between individuals, from “early
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birds” (early types) to “night owls” (late types) and control
our circadian rhythms: mental and physical processes that
follow a roughly 24-hour cycle. “Circadian” means about
(circa) a day (diem). While this term is often used to de-
note the difference between individuals who have genetically-
based preferences for sleeping earlier or later, it refers to any
biological cycle that follows a roughly 24-hour period, in-
cluding regular changes in our blood pressure, cortisol, and
melatonin levels. These fluctuations affect when we sleep,
eat, and also have an impact on our physical and mental per-
formance.

Until relatively recently, the concepts of a body clock and cir-
cadian rhythms were popularly considered at best folk wis-
dom or at worst pseudo-science. The time we get up and go
to bed has a persistent hold in culture as a personal choice. In
proverbs throughout the world, the “early bird (always) gets
the worm”; early rising is a quality associated with hard work
and success, late rising with laziness and failure. In partic-
ular, while the notion of the lark and owl may ring true for
many people, the recent identification of a genetic compo-
nent that reflects a hardwiring of individuals to specific tem-
poral preferences may still be challenging to accept. How-
ever, increasing and converging evidence indicates that like
almost every other organism on the planet, the human body’s
biochemistry varies predictably throughout the day [7]. This
has been shown repeatedly and multiple times in other mam-
mals, animals, and organisms [15, 1]; but only in the past few
decades has it emerged that humans are no different [2] and
that circadian rhythms affect our mood, levels of concentra-
tion, digestion, sleep patterns, and much more [17]. A cause
for concern is the fact that approximately 80% of the popu-
lation [36], perhaps as a result of societal ignorance of this
concept, are living against their genetic disposition and wak-
ing earlier than they would naturally.

Persistent disruption of biological rhythms can have serious
consequences for physical and mental well-being; and it is
considered a factor in cardiovascular disease, cancer, obe-
sity, and mental health problems [18]. For example, constant
changes in daily routine due to shift work has been shown to
increase risk factors for cancer, obesity, and type-2 diabetes



[42]. The effects of sleep debt, similar to crossing time zones,
can cause temporal lobe atrophy (amnesia) and spatial cogni-
tive deficits [10]. The advent of information technology and
the resultant always-on ethos may also cause routine disrup-
tion on personal and societal levels. Sleep pathologies, which
can be indicative of disruption of internal biological rhythms,
are reaching an epidemic level, with sleep disorders affecting
around 70 million people in United States alone 1. A growing
area of research also relates sleep and circadian rhythm dis-
turbance to affective illnesses, such as bipolar disorder and
major depressive disorder [22].

Much recent work in UbiComp has looked at sleep, and many
commercial devices are now available for consumers to mea-
sure and analyze their sleep. But a study of sleep that does
not consider broader circadian patterns and the effect of light
exposure (a key factor in “setting” our biological clock) is
only recognizing at best half the picture. Furthermore, tech-
nological interventions that focus on sleep disturbance alone
may only be treating the symptoms of a misaligned biological
clock. Circadian rhythms are relevant beyond just when we
sleep and have considerable impact on our waking behavior,
significantly contributing for example to our dips and peaks
of alertness throughout a day. In many studies in chronobiol-
ogy, circadian functioning is measured via physical activity.
In this paper, we investigate whether circadian patterns can be
detected from smartphone usage data. We present the results
of a 97 day study with 9 participants in which we use smart-
phone activity to measure idiosyncratic sleep and circadian
patterns as well as to detect symptoms of sleep deprivation,
including the sleep debt that accumulates as a result of un-
dersleeping on workdays and oversleeping to compensate on
free days.

The contributions of the paper are:

• An illustration of the potential of bringing a consideration
of circadian rhythms to UbiComp by using smartphone
data to detect biomarkers indicative of circadian misalign-
ment. In particular, we identify the pattern of discrepancy
between social and internal time. We also find that duration
of morning phone usage may be indicative of sleep inertia,
a transitional period from sleep to a fully awake state.

• In addition, we present a low cost method to infer sleep
onset and duration using smartphone usage patterns. From
a study with college students that spans three distinctive
phases (end of Fall semester, Winter break, and Spring
semester), we show that this easily sensed data can be in-
dicative of this population’s sleep patterns.

• Finally, we discuss the opportunities for interventions in
addressing this misalignment. We introduce the concept
of Circadian Computing: technologies that are able to de-
tect and can help synchronize our idiosyncratic biologi-
cal rhythms — a new area that has considerable potential
for UbiComp including: 1) sensing circadian biomarkers,
2) incorporating circadian rhythms into measurement in
health and other areas, and 3) delivering circadian stabi-
lization interventions.

1http://www.cdc.gov/sleep/about us.htm

BACKGROUND
The observation that significant aspects of physical and men-
tal behavior in humans seemed to involve rhythmic processes
(“circadian rhythms”) was first noted over 50 years ago by
Curt Richter, a biologist studying the relations among ac-
tivity, sleep, and the 24-hour clock [33]. For many years
since, scientists who study such relations, known as chrono-
biologists, have continued to identify and demonstrate circa-
dian variations in other animals and organisms as well as dis-
cover underlying biological explanations for these variations.
Most notably, the Suprachiasmatic Nucleus (SCN), a group of
nerve cells in the hypothalamus in the brain, was identified in
the early 1970s as the central clock in the mammalian circa-
dian system; and there has been overwhelming evidence of a
genetic component to chronotype in animal models. Molec-
ular genetic studies have also revealed remarkable similar-
ities between the biochemical pathways by which the cir-
cadian clocks keep time in species as diverse as Neospora,
Drosophila, and mice [15, 1].

Humans, less accepting of live dissections, have been harder
to study. Jürgen Aschoff was the first to investigate circadian
rhythms in human beings. He noted that “whatever physi-
ological variables we measure, we usually find that there is
a maximum value at one time of day and minimum value at
another” [2]. To isolate participants from temporal cues and
maintain constant conditions, Aschoff built a bunker into a
hill at Andechs as an isolation facility [3] and by identify-
ing previously unknown photosensitive ganglion cells in the
eye, proved the hypothesis that the human body clock is en-
trained by light. The finding introduced a new model for
biological rhythms in humans whereby genetic components
(clock genes) combine with environmental input (predomi-
nantly daylight exposure) and result in a wide variance across
individuals in temporal preference as well as in cognitive and
physical performance.

More specifically, the circadian clock uses external infor-
mation to remain synchronized with environmental changes.
The process of synchronization is called entrainment, and en-
vironmental cues for entrainment are known as Zeitgebers
(zeit: time, gebers: givers). Entrainment is an active process;
the internal clock syncs to external cues. A number of envi-
ronmental factors like food intake and temperature can work
as Zeitgebers, but light (and darkness) is the most dominant
cue. In mammals, the light Zeitgeber is transduced through
the retina to the “master” clock center (the “pacemaker”) in
the SCN located above the optic nerves. The SCN uses these
external cues for coordinating and synchronizing all the cel-
lular circadian clocks to periodic changes in the natural envi-
ronment.

In constant conditions, without any Zeitgeber, the circadian
clock “runs free”. In a given population, free-running periods
of circadian rhythms are distributed around a species-specific
mean. For a majority of humans, this free-running period
is slightly longer than 24 hours. Humans also show inter-
individual differences even in the entrained conditions with
the presence of Zeitgebers. This difference gets reflected in
biochemical processes (e.g., timing of the secretion of hor-



mones like melatonin) and sleep timing preferences, where
early risers are referred to as “larks” and late sleepers as
“owls”. This phase difference between time cues from our
environment (i.e. the cycle of the sun) and individual inter-
nal time (i.e. the biological clock) is known as the phase of
entrainment, and when individuals vary in this trait they are
referred to as different chronotypes.

Chronotype is a phenotype — a characteristic that results
from genetic factors interacting with a person’s environment.
As such, it depends on specific genetic factors [45], and envi-
ronmental factors also influence the trait. In particular, daily
light exposure can affect the phase of entrainment. Longer ex-
posure to outdoor light advances the sleep period and results
in an earlier chronotype [40], and it has been shown that be-
ing exposed to outdoor light for two hours advances chrono-
type by more than an hour [39]. Chronotype also depends on
age and gender. Children are generally early chronotypes,
chronotype increasingly becomes later during adolescence,
and after reaching a maximum lateness around 20 years of
age, it shifts to an earlier phase. In general, people over 60
years old have an earlier chronotype. As for gender, the shift
to a later chronotype does not occur at as early an age for
males as for females, which is in accordance with a general
biological phenomenon of females tending to mature earlier.
This means men are relatively later chronotypes compared to
females for most of adulthood [37]. The chronotype phases
for men and women coincide around age 50, the average age
of menopause.

A More Complex Sleep Model
Sleep is a result of complex interactions between a number of
biochemical processes. The neural networks responsible for
sleep and wake activity are influenced by two mechanisms
working against each other: the internal circadian oscillator
that promotes wakefulness throughout the day and the home-
ostatic system that increases the drive to sleep the longer we
have been awake [12]. This circadian drive determines the
timing of sleep, and the homeostatic oscillator determines its
duration [17]. Factors such as social relationships and work
further influence our sleep patterns. The timing and quality of
sleep is thus affected by three complicated and individually-
diverse factors: our circadian system, a homeostatic oscilla-
tor, and our social time.

When we sleep and how we perform throughout the day is
thus determined by multiple factors and contingent, in part,
on each person’s genetic makeup and age. As a consequence,
sleep advice (such as when we should sleep and wake) can
therefore not be prescribed generically but rather must be tai-
lored to each person’s complex genetic and environmental
conditions. This is why not all of us can, or should, main-
tain an “early to bed and early to rise” lifestyle.

Beyond the timing of sleep, circadian rhythms control the rise
and fall of multiple circumstances, such as when we are most
alert (on average in the late afternoon) [7]; when we can swim
the fastest (in the late evening) [6]; and when we are most
prone to heart attack (in the morning) [31]. Since internal
body clocks vary across individuals, however, the timings of
biochemical changes that affect us also vary from individual

Figure 1. Sleep and circadian system.

to individual and do not necessarily correspond to the time on
the clock.

Our chronotype is thus not a matter of choice but determined
by our genetics and influenced by our environment. We there-
fore cannot decide the rise and fall of our daily biological
cycles, but we can (and approximately 80% of us do [36])
live contrary to these variations. Using survey data from over
55, 000 participants, Roenneberg et al. [37] found a signifi-
cant discrepancy between sleep duration on workdays and on
weekends. Later chronotypes sleep more on weekends in or-
der to compensate for “sleep debt” accumulated over work-
days. On the other hand, early chronotypes get adequate
sleep during workdays but tend to sleep less on weekends,
possibly due to social pressure to stay up later on non-work
nights since the majority of the population have later chrono-
types. This sleep discrepancy that results from the interaction
between biological and societal clocks resembles the situa-
tion of traveling westerly across several time zones on Fri-
day evening and returning back Monday morning, which pro-
duces a misaligned circadian system due to “social jet lag”.
Social jet lag can act as an internal disruptive agent; and it has
been shown that larger the social jet lag, the greater the risk of
using cigarettes, caffeinated drinks, and alcohol [47]. Social
jet lag has also been associated with obesity [36]. Addition-
ally, sleep debt can result in longer “sleep inertia”, which is
a transitional period from sleep to feeling fully awake. This
period is characterized by disorientation of behavior as well
as impaired cognitive and behavioral performance [16]. Pro-
longed sleep inertia has been shown to negatively affect atten-
tion, performance, and mood [14] as well as produce learning
deficits [8].

Our biological clock generates daily rhythmic variations in
nearly every neurobehavioral variable [26]. UbiComp sys-
tems could significantly contribute to both the measurement
of circadian rhythms as well as to the creation of environ-
ments and systems that support stable biological rhythms and
capitalize on users’ biochemical diurnal variations to maxi-
mize performance and well-being. While living against our
biological clock has been empirically shown to result in neg-
ative health and cognitive consequences, living in tune can
bring significant benefits in the form of improved well-being,
better sleep, and increased productivity.



RELATED WORK
As a movement towards quantifying the self grows and the
use of monitoring devices and personal informatics software
becomes more widespread, people are increasingly attempt-
ing to measure and track health related behaviors. Sleep in
particular has gained considerable recent interest, leading to
the development of tools and technologies designed to help
users track sleep patterns and duration, evaluate sleep quality,
and adopt healthy sleep and wake schedules.

Commercial Products
A number of commercial wearable devices now on the mar-
ket enable such forms of sleep assessment. Wristbands such
as those by Lark Technologies2 and WakeMate3 use actimetry
motion sensing to measure nightly sleep duration and quality,
and these devices awaken a user through a silent vibrating
alarm at a time during the cycle of sleep most “optimal” for
feeling refreshed. Similarly, the FitBit4, Jawbone UP5, and
Nike Fuelband6 are wrist-worn devices that use accelerome-
ters to determine phases of light and heavy sleep. The FitBit
calculates a measure of sleep “efficiency” that is based on
sleep duration and the actual amount of time required to fall
asleep after getting in bed.

After syncing collected data either manually or automatically
with a mobile device, products normally allow users to access
sleep data and browse information such as duration, start and
end points, and entry and exit from sleep phases. The Jaw-
bone UP allows users to set sleep goals; and the UP, FitBit,
and Fuelband (which capture daily activity and logging in ad-
dition to sleep tracking) encourage users to reflect on how
certain daily behaviors such as caffeine intake impact subse-
quent sleep. However, these technologies are typically intru-
sive and burdensome to use, requiring users to explicitly in-
dicate when they go to bed and when they wake up as well as
check that any pairing is properly configured and functioning
to ensure accurate capture and analysis of sleep data. Apps
such as ElectricSleep7, Sleep as Android8, and SleepCycle9

attempt to automatically track sleep by utilizing smartphone
accelerometers to monitor movement; but these approaches
still require users to keep the phone in bed during sleep, and
they also face challenges introduced by sleeping partners or
pets.

Academic Research: Measurement and Intervention
Sleep research in UbiComp generally falls into measurement
and intervention. Recently, researchers have begun attempt-
ing to use smart phones for more unobtrusive monitoring.
iSleep [20] and wakeNsmile [25] use the built-in phone mi-
crophone to detect actions and sounds (e.g., body movement,
snoring, and cough) and predict sleep phases. When eval-
uated on 51 nights of data, iSleep achieved 90% accuracy
2http://www.lark.com/
3WakeMate.com
4http://www.fitbit.com/
5https://jawbone.com/up
6http://www.nike.com/us/en us/c/nikeplus-fuelband
7https://code.google.com/p/electricsleep/
8https://sites.google.com/site/sleepasandroid/
9sleepcycle.com

in classifying sleep-related events. Chen et al. use a sensor
based inference algorithm that combines a number of phone
usage features (e.g., recharging and screen unlocking) along
with environmental cues (e.g., ambient sound and light) to
predict sleep duration [9]. The model estimated sleep dura-
tion to within 42 minutes in a week long study with 5 graduate
students and 3 visiting scholars. Similarly, Toss ‘N’ Turn [29]
uses sound, light, movement, screen state, app usage, and bat-
tery status to classify sleep state and quality. Along with these
types of mobile sensor data, SleepMiner [4] also incorporates
communication logs in its prediction of sleep quality.

Fewer studies have focused on providing tools to help users
understand and improve their sleep habits. Most notably, Kay
et al. [24] have designed and implemented Lullaby, which
records environmental factors that might cause sleep disrup-
tions. By combining a wide range of sensors for recording
temperature, sound, light, motion, and pictures, the system
provides a comprehensive recording of sleep and the envi-
ronmental conditions. While most sleep tracking technology
focuses on sleep duration, Lullaby aims to help users identify
when and why their sleep has been interrupted.

Choe et al. [11] offer a summary of design opportunities for
technology to support healthy sleep behaviors, including rec-
ommendations from literature to maintain “sleep hygiene”,
for instance by adhering to constraints on daytime activities.
Bauer et al.’s ShutEye [5] smartphone app realizes some of
those ideas through a glanceable wallpaper display that con-
veys the effect of various activities on a person’s sleep pat-
terns, for example showing how exercise or drinking caffeine
will affect that night’s sleep depending on the current time of
day.

Thus while an increasing amount of work in UbiComp has be-
gun to look at measuring and improving sleep, this research
has not taken into consideration circadian rhythms and has
failed to factor in daylight exposure or chronotype as part of
sleep measurement or intervention. Any such interventions
with a restricted theoretical understanding of sleep and wak-
ing behavior will likely provide a fragmented picture of both
sleep and our broader daily experiences. Our work seeks to
address this imbalance by identifying novel methods to mea-
sure chrontoype, sleep, and the impact of social jet lag in a
manner that is unobtrusive, low-cost, and scalable.

METHOD
In our study, we investigated whether phone usage patterns
are indicative of discrepancies in circadian rhythms. We re-
cruited 9 participants (7 males, 2 females) using public mail-
ing lists and snowball sampling. Participants were undergrad-
uate students with an age range of 19 - 25 years. All partici-
pants had been using smartphones for at least six months prior
to the study. 7 out of 9 participants used smartphones as their
daily alarms. More importantly, all participants reported us-
ing their smartphones immediately after waking up (within 5
or 10 minutes) for activities including checking email, inter-
net browsing, and interacting with social media apps. This
long duration of phone usage in the morning is consistent
with findings from a large scale study by Lee et al. [28] on 95
college students.



Undergraduate students are highly appropriate subjects in this
case because they are statistically most likely to be on the
“late” end of the chronotype scale [37] and hence experi-
encing the most symptoms of social jet lag. Recent studies
have found that college students typically receive inadequate
amounts of sleep and have volatile sleep-wake patterns. This
behavior can result in increased stress, consumption of alco-
hol and drugs to help with sleep, poor academic performance,
and even car accidents [43].

In order to quantitatively assess individual chronotype, Roen-
neberg et al. [40] have introduced a simple questionnaire in-
strument: the Munich ChronoType Questionnaire (MCTQ).
This survey separately asks about sleep, activity, and light
exposure for both work and free days. Because comparison
of chronotype requires a single reference point, mid-sleep
on free days (MSF) — the halfway point between going to
sleep and waking up — is used as the marker for individ-
ual chronotype. In previous studies, mid-sleep has also been
reported as the best phase anchor point for biochemical indi-
cators like melatonin onset [44]. Except for extreme early
chronotypes, most people accumulate sleep debt on work-
days, which they compensate for by sleeping in on free days,
if possible [40]. By taking this “oversleep” on free days into
consideration, chronotype is assessed as the corrected mid-
sleep point (MSFsc) [47]:

MSFsc = MSF − 0.5 (SDF − (5 ∗ SDW + 2 ∗ SDF )/7)

Here, SDF and SDW are sleep duration on free days and
work days, respectively. (5 ∗ SDW + 2 ∗ SDF )/7 is the
averaged sleep duration across the week.

The use of the MCTQ to assess chronotype has been clini-
cally validated using six-week long sleep logs of 484 subjects
to show that sleep-wake patterns correlate significantly with
the MCTQ variables [38]. Specifically, using daily profiles of
blood parameters measured in constant routines while con-
trolling for the influences of activity, sleep, food, or light,
Roenneberg et al. found that biochemical hormones includ-
ing melatonin and cortisol strongly correlate with chronotype
according to the MCTQ.

The analysis of chronotype assessed with the MCTQ has
been used for gaining insights into large scale human sleep-
wake traits. Specifically, analysis shows that when someone
goes to sleep and how long they sleep are independent. Fur-
ther, distributions of short and long duration sleep among
early (00:00 AM <= MSFsc <= 03:00 AM) and late
(MSFsc >= 04:00 AM) chronotypes are similar. However,
sleep debt accumulation over work days is much higher for
late chronotypes, which they compensate for by oversleeping
on free days.

In order to investigate whether there are changes in patterns
related to socially versus individually determined schedules,
our data collection spanned three distinctive phases in under-
graduate academic life: around 5 weeks at the end of the
Fall semester, 4 weeks of winter break, and 5 weeks of the
Spring semester. One participant was interning during the

ID Chronotype Age Study Duration Valid Journal
(MSFSC) Range (Days) Entries

1 06:59 20-21 97 93
2 06:41 20-21 96 94
3 06:12 18-19 95 28
4 03:02 18-19 93 66
5 06:38 18-19 93 78
6 05:18 18-19 91 66
7 04:54 22-24 87 80
8 04:41 18-19 92 46
9 05:43 20-21 76 74

Table 1. Study demographics

Fall and therefore was not attending any class during that
semester. All other participants had regular class schedules
during the Fall and Spring semesters. At the beginning of the
study, participants completed a number of surveys including
the MCTQ; and they installed an Android app, which runs
in the background and collects data about calls, SMS, loca-
tion, browser search, browser history, application usage, and
screen usage. To maintain privacy, sensitive data like browser
history or SMS recipients were one-way hashed.

During the study, each participant maintained a daily online
sleep journal to record sleep onset and duration as well as in-
formation about sleep disturbances. A reminder email was
sent every morning. To keep data quality high, we discarded
any retrospective entries and retained only journal record-
ings for the previous day’s sleep. Participants were compen-
sated based on the number of sleep diaries completed and the
amount of data successfully captured. Table 1 shows the age
group, valid sleep entries, and chronotype (MSFSC) of the
participants as calculated from the MCTQ survey. Most par-
ticipants have a late chronotype as expected given their ages,
though one participant (participant 4) has MSFSC = 3:02,
which is quite an early chronotype considering the age. This
range of chronotypes in our sample allowed us to compare
the effects of social jet lag and sleep inertia across different
chronotypes.

In order to provide a more nuanced understanding of low-
level smartphone patterns, we also interviewed participants at
three points during the study (beginning, middle, and end).
In this paper, we largely focus on presenting the results of
our algorithmic developments for detecting chronotype, sleep
duration, and social jet lag.

Sleep algorithm
We developed a rule-based algorithm to infer sleep onset, du-
ration, and midpoint. It uses screen on-off patterns in order to
build personalized models for determining sleep. The pseu-
docode for calculating sleep duration from phone usage is
shown in Algorithm 1.

In the preprocessing phase, we detect and filter out non-usage
patterns resulting from system shutdown. After that we group
screen on and off events over 24 hours with mid-day as an an-
chor point. Given that the notifications from the applications
can briefly turn on the screens, we use a duration threshold (θ)
to signify active user interaction. For this study, any phone



usage duration less than 30 seconds is discarded. As the par-
ticipants are non shift-workers as defined in the MCTQ sur-
vey, we are interested in sleep onset happening between late
night and early morning. So, we only use phone non-usage
patterns starting between 10PM to 7AM for sleep detection.
The longest duration of non-usage is then assumed as a sleep
event.

We further adjust the sleep duration by adding the individual
corrective term (δ) to the duration of longest non-usage. For
each participant, the corrective term is learned by using the
first two weeks of data. If there is a consistent pattern in the
difference between calculated and reported sleep over this pe-
riod of time, the corrective term δ is calculated to minimize
the error. In other words, δ accounts for individual differences
in phone non-usage and sleep — the period between when
someone stops using the phone and falls asleep as well as
the time difference between waking up and turning the screen
on. The beginning of the longest non-usage duration is used
for marking the sleep onset event. Using this sleep onset and
the corrected sleep duration, we calculate the midpoint be-
tween sleep onset and wake up as the phrase reference point
for sleep [40].

Sleep Algorithm Accuracy
In Table 2, we compare the inferred sleep duration average
for each participant with the ground truth from the sleep jour-
nal data. Availability of sleep journal data across partici-
pants has been shown in Table 1. For all participants, our
algorithm proves to be an unobtrusive, low-cost, and reliable
method for sleep sensing. The difference between average
sleep duration inferred from phone usage and ground-truth is
less than 45 minutes for all participants. The performance
of our algorithm is comparable to a more computationally
expensive model from Zhenyu et al. [9], which uses envi-
ronmental cues like light, sound, and user movement to infer
about sleep. Specifically, the difference between the calcu-
lated and ground-truth mid-sleep point across all individuals
is 23.8 minutes (Confidence Interval: ±11 mins at p < 0.05).
Being able to measure mid-sleep point with such high accu-
racy is important given that it is used as a reference point for
assessing circadian rhythm discrepancies [40, 38].

The algorithm overestimates sleep duration (inferred sleep >
ground truth) when the non-usage duration is longer than ac-
tual sleep. This may result from phone non-use prior to going
to bed or immediately after waking up. For example, if a per-
son sleeps from 11:30pm to 7:00am but does not use his or
her phone from 11:15pm to 7:15am, then the inferred sleep
duration would be 30 minutes more than the ground truth.
Going forward, refinement in learning the individual correc-
tive term, described above, can reduce such overestimation.

The algorithm can also underestimate sleep duration
(inferred sleep < ground truth). This may happen since
screen on and off events do not always reflect active user in-
teractions. For example, application notifications, incoming
messages, and calls can turn on the screen. While our al-
gorithm uses a time threshold to filter out some of these false
alarms, there are cases that are considerably difficult to detect.
For example, if the user snoozes or turns off the alarm and

sOn : Ordered N × 1 timestamp of screen-on events
sOff : Ordered N × 1 timestamp of screen-off events
θ : Threshold duration for phone usage
δ : Individual corrective term
output: Calculated sleep duration, onset and midpoint

n← 0
t← 0
for i← 0 to N do

/* Discarding screen-on events
caused from application
notifications by filtering based
on interaction duration. */

di ← sOffi − sOni
if di > θ then

fOnn ← sOni

fOffn ← sOffi
n← n+ 1

end
end
/* Now fOff and fOn contains filtered

screen on and off events. We’ll
calculate non-usage patterns from
these events. */

for i← 0 to n do
/* We are interested in sleep

during night only. So we’ll
discard any non-usage patterns
that does not start between 10PM
to 7AM (next day). Note that
this conforms to the assumption
that the participants are
non-shift workers as defined in
MCTQ. */

if fOffi is between 10PM to 7AM (next day) then
nonUsaget ← fOni+1 − fOffi
nonUsageOnsett ← fOffi
t← t+ 1

end
end
/* The longest duration of non-usage

is the duration of sleep. */
sleep′ ← maxt(nonUsaget)
/* Sleep onset is marked by the

beginning of the longest duration
of non-usage block */

sleepOnset← nonUsageOnset [argmaxt(nonUsaget)]
/* Finally, using the individual

corrective term to adjust sleep
duration. */

sleep← sleep′ + δ
/* Calculate sleep midpoint from onset

and duration. */

sleepMidpoint← sleepOnset + sleep
2

Algorithm 1: Computing sleep duration, onset, and mid-
point from phone usage.



ID Avg. Sleep Duration
Inferred Ground Truth

1 08 : 54† 08 : 13
2 08 : 09 07 : 45
3 08 : 33† 08 : 15
4 08 : 02† 07 : 25
5 05 : 44† 06 : 12
6 07 : 17† 07 : 13
7 07 : 16† 07 : 14
8 07 : 30† 08 : 14
9 05 : 42 06 : 25

Table 2. Average sleep duration across participants. † indicates if the
inferred mean sleep duration falls within the confidence interval calcu-
lated from journal entries with p-value < 0.001 .

goes back to sleep, the longest duration of non-usage would
be smaller than that of actual sleep. Being able to discern
such events from active user interactions will require fine-
tuning the personalized algorithm with more training data and
labels.

Assessing Sleep-Debt
Our sensed data reveals a systematic shortening of sleep du-
ration on workdays. Most participants sleep more during
the weekend, which reflects an accumulated sleep debt from
workdays. Given that most of our participants are late to
extreme late chronotypes, this finding aligns with prior re-
search that late chronotypes experience increased sleep debt
and attempt to compensate by oversleeping on free days [40].
Accumulated sleep debt and the compensating oversleep is
shown in Figure 2. After excluding participant 8 who sleeps
considerably more on weekends and participant 4 who has an
early chronotype, on average participants sleep an additional
20 minutes on weekends.
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Figure 2. Average sleep duration across participants with 95% confi-
dence interval.

The one participant with an early chronotype, consistently
sleeps significantly less (an average of 32.56 minutes) on
weekends across all three study phases. In contrast to late
chronotypes who lose sleep during workdays, the participant
with an early chronotype loses sleep on weekends, possibly
from complying with social pressure to stay up late from
peers, the majority of whom are late chronotypes in this age

group. This gets reflected in our dataset as well — on av-
erage his sleep onset advances by 38 minutes on weekends.
The opposing relationship between the sleep patterns of late
and early chronotype on workdays and freedays is a well-
known phenomenon in chronobiology termed as the “Scissors
of Sleep” [34].

The shifting of sleep midpoint reflects the overall trend of ac-
cumulating considerable sleep debt during the workdays. Ta-
ble 3 compares sleep midpoint as inferred from phone usage
across three distinctive phases — Fall semester, Winter break,
and Spring semester. During Fall and Spring, when there are
external responsibilities from an imposed schedule from aca-
demics or one participant’s internship, the sleep midpoints
during workdays are much earlier than weekends. However,
during the Winter when schedule requirements are less strin-
gent (i.e., participants can freely choose their sleep timing),
sleep midpoint on the weekend differs by only four minutes.

Sleep Midpoint (AM)
(±95% CI) (Hr)

Weekday 05 : 24± 0.02
Weekend 05 : 47± 0.03

Weekday (fall) 05 : 06± 0.04
Weekend (fall) 05 : 40± 0.06

Weekday (winter break) 05 : 20± 0.03
Weekend (winter break) 05 : 24± 0.05

Weekday (spring) 05 : 30± 0.02
Weekend (spring) 05 : 52± 0.02
Table 3. Sleep midpoint across different phases.

Quantifying Social Jet Lag
As mentioned in the previous section, societal determination
of work times (e.g., class schedules) interferes with individ-
ual inherent sleep preferences. The shift in sleep and activity
timings results in a discrepancy of several hours between the
work week and the weekend (or other free days). The ef-
fects of this are comparable to jet lag. However, while the
misalignment from traveling is transient, social jet lag can
be chronic throughout adult life and results in a range of ill-
nesses. Further, in circadian systems, misalignment can actu-
ally be more disruptive than a complete loss of rhythms [41].

Social jet lag can be quantified by calculating the absolute
difference between mid-sleep on workdays (MSW) and mid-
sleep on free days (MSF) [47]:

∆MS = |MSF −MSW |

The distribution of social jet lag across chronotypes in our
dataset is shown in Figure 4. Social jet lag is most pro-
nounced in late types, which is consistent with results from
a previous MCTQ survey on a large population [47]. Similar
to those findings, we also found that the participant with an
early chronotype suffers from considerable jet lag on week-
ends. Roenneberg et al. [47] hypothesized that early chrono-
types suffer from social jet lag due to social pressures applied
by later chronotypes on weekends. Since late chronotypes are
more prevalent than early chronotypes, socializing requires
early types to stay up later into the night than they would
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Figure 3. Average sleep onset and duration across participants from phone and journal data. The phone non-usage coincides with sleep events; the
trend is more stable on weekdays due to more data points. For most participants, sleep onset is delayed and duration is longer during the weekends
while participant 4, an early type, gets less sleep on weekends.
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Figure 4. Duration of average social jet lag compared across chrono-
types. 95% confidence interval has also been shown. Note that we have
only one participant with chronotype 03:00, so interval estimation is set
to zero in that case.

naturally prefer; and they then do not sleep longer the next
morning since their circadian drive wakes them up early.

Inferring Sleep Inertia
Roennberg et al. [40] note that the time individuals take to
fully awaken and be fully functional, known as sleep inertia,
depends on chronotype. Sleep inertia is different from the
time it takes to wake up, and it can last for hours. The du-
ration of sleep inertia is longer for later chronotypes during
workdays, as a result of insufficient sleep.

During our interviews, we found that a majority of partici-
pants use their smartphones as a part of the wake up process.
Given this, an increased time to become fully awake might
be reflected in relatively longer phone usage. We therefore
define sleep inertia (SI) as the total minutes of active phone
usage in the morning:

SI =
∑

6AM<t<12AM

PhoneUsage(t)
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 chronotype

late
 chronotype
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Figure 5. Inferred sleep inertia duration (with 95% CI) compared across
early (N=1) and late chronotypes (N=8). Difference in sleep inertia du-
ration from weekdays to weekends reflects the patterns of accumulated
sleep debt of different chronotypes.

Linear regression between sleep inertia and sleep duration
shows a strong negative trend (slope = -1.9, p < 0.01). This
is consistent with earlier findings that the shorter the sleep du-
ration, the longer the sleep inertia [40]. A comparison across
days also reflects the relatively late chronotype of the par-
ticipants in this study: the duration of sleep inertia is much
longer on weekdays compared to weekends as shown in Fig-
ure 5. For the one early chronotype participant, the sleep-
wake transition trend is reversed and the sleep inertia is higher
on weekends, which is expected given the pattern of sleep
debt described earlier.

DISCUSSION
In this paper, we have focused on detecting and inferring be-
havioral traits of circadian biomarkers in a manner that is
low-cost, reliable, and scalable. While there have been ex-
citing new findings about the biology of circadian rhythms,
such studies have been performed in artificial settings, for in-
stance, in labs where participants sleep with electrodes fas-
tened to their heads or have to provide periodic samples of



blood and saliva. Understandably, these methods are not cur-
rently scalable to a large population. As a result, we still do
not have answers to basic questions about circadian rhythms
and sleep in the real world. Subjective assessments and sur-
veys have been used [37] to investigate the relations between
environmental factors, circadian systems, and sleeping pat-
terns; but given the instantaneous changes in these processes,
chronobiologists have pointed out the need for in situ, broad
data-collection strategies that can record real-time data over a
large population spanning various time zones and geograph-
ical locations [35]. A cheap, reliable, and unobtrusive way
of inferring these cues could help people understand and di-
agnose sleep issues, enable adoption of individualized work
schedules, and provide feedback for laboratory research that
could potentially lead to new experiments for untangling re-
lationships between biological rhythms and behavioral cues.
Our work is a leading step in that direction.

Implications for Sleep Measurement
While previous work in sleep within the UbiComp commu-
nity has focused on unobtrusive sleep measurement [9, 20],
our study pushes beyond such work by considering sleep
within a three process model of circadian rhythms, homeo-
static sleep oscillation, and social jet lag. Our results illus-
trate that among our study participants, phone use alone cor-
responds very tightly to sleep duration over a significantly
longer period of time than previously studied and across dis-
tinctly different periods (i.e. “work” to holidays and back to
“work”).

Given this ability to passively detect sleep duration, we are
able to then reliably detect circadian discrepancy — as shown
in the correspondence between the MCTQ and our soft-
sensed data. Following Roennberg et al. [37] we would ex-
pect to see significant variation in sleep behavior on work and
free days for late chronotypes, and this is precisely what our
method finds.

We can detect evidence of social jet lag in waking activity,
which was experienced by almost all participants in our sam-
ple. We quantify sleep inertia using morning phone usage,
and we find sleep inertia to be higher on weekdays than week-
ends, which aligns with expectations since most participants
in our study were late chronotypes. For the participant with
an early chronotype, we note that sleep inertia increases on
weekends, which is reflected in shortened sleep duration due
to social pressures.

In our future work, we plan to identify more nuanced symp-
toms of social jet lag as mediated by smartphone use. For
example, the midday dip or afternoon slump in cognition re-
sulting from circadian phase might be reflected in different
patterns of phone usage for this population. Many people
wake to smartphone alarms or use their phone to check the
time, and our study takes advantage of such behavior to of-
fer a low-cost, population-scalable method for detecting sleep
duration. Our results indicate that for this sample, it is possi-
ble to detect traces of misalignment — as typically felt during
jet lag — which can be even worse than a complete loss of
rhythm [41]. More importantly, unlike the current practices
of using survey questionnaires, our method can be used for

tracking both long and short term effects of circadian mis-
alignment, as we have shown in the distinctive phases during
our study.

Circadian Computing: Implications for UbiComp
Circadian rhythms control various biochemical changes in
our bodies over 24 hours, having a direct impact on our be-
havior, emotions, and cognition. The results of our study
to detect such rhythms have broad implications for the Ubi-
Comp community. Specifically, UbiComp is uniquely posi-
tioned to contribute to the development of Circadian Comput-
ing — technologies that can both sense and react to our indi-
vidual circadian variations — in the following ways: (1) de-
veloping novel software and hardware-based approaches for
sensing circadian biomarkers and using this data to create in-
dividual models of daily functioning; (2) bringing a circadian
perspective to existing work in UbiComp in health, sleep, and
overall wellbeing; and (3) developing circadian interventions
that take advantage of more nuanced models of biochemistry
to help improve wellbeing and performance.

Refined Sensing of Circadian Factors
The lark-biased maxim: “Early to bed and early to rise makes
a man healthy, wealthy, and wise” is simply erroneous for the
majority of the world’s population. Every person has an in-
dividual and distinct internal time signature that affects their
cognitive and behavioral functioning over a day, and while
there are extremes at either end of the chronotype scale, most
of us lie somewhere in the middle.

There is a considerable opportunity for researchers in Ubi-
comp to apply their expertise in sensing and modeling to help
develop personalized models of each individual’s circadian
patterns. This is certainly a non-trivial task involving many
complex factors [7] and would entail at the very least reliably
measuring sleep, sleep debt, and light exposure. The findings
from our study can help to identify and shape cost-effective
solutions towards that goal. Future work might explore the
use of hardware sensors (e.g, physical activity, light, loca-
tion) to provide a more complete picture of individual circa-
dian variations.

Consequences for Measurement
In recent years, there has been a growing focus within the
Ubicomp community on technologies to support overall well-
being. These approaches have ranged from improving mea-
surement techniques using passive and active measurements
[27] to supporting therapeutic interventions [30, 32, 19].
Chronotherapy aims to tailor the delivery of treatment to
times that best suit a patient’s chronotype and thereby maxi-
mize the impact of care. Indeed, timing has been shown vi-
tal to the medical interventions for many illnesses. For ex-
ample, Harkness et al. [21] found that disease activity and
self-perceived pain in rheumatoid arthritis manifested by joint
stiffness and grip strength follows a circadian rhythm, which
has important clinical implications for assessment and timing
of treatment. Circadian variations in pain, blood pressure,
mood, and other elements have direct implications for how
we measure, act on, and interpret these phenomena within
UbiComp.



Circadian Interventions - Fixing a Broken Clock
Chronobiology makes it clear that (unlike our computers) our
performance throughout the day is not uniform. Rather, our
physical and mental capacity vary throughout the day accord-
ing to biochemical patterns that are potentially measurable
and predictable. UbiComp can have a significant role in help-
ing us use this knowledge to play to our biological strengths.
Reliable detection of idiosyncratic circadian variations, sleep
oscillation, and corresponding states of alertness opens up the
possibility of developing circadian friendly systems that can
respond to these variations and provide more biologically at-
tuned support in the areas of physical and cognitive perfor-
mance, sleep, and wellbeing.

In our study, similar to previous findings of Digdon et al. [13],
participants displayed varying levels of alertness throughout
the day. Owls (late chronotypes) generally are less alert early
in the morning and become more focused later in the day,
reaching peak alertness in the early evening. This knowledge
could impact systems that support concentration, for instance
through a single-threaded application that supports focus or
that pleasurably enhances distraction in order to help us enjoy
(or at least feel less guilty about) procrastination. Another ex-
ample is a circadian-rhythm-aware calendar application that
more appropriately schedules events such as meetings, work-
outs, and relaxation based on our chronotypes.

Recent research provides substantial evidence that circadian
rhythms are central to many mental illnesses including bipo-
lar disorder, schizophrenia, and depression [41, 22]. Abnor-
malities in sleep timing and behaviors have been highly asso-
ciated with a number of psychiatric disorders. As a result, the
stabilization of sleep and circadian rhythms has been shown
to reduce symptoms for psychiatric and neurodegenerative
diseases. MoodRhythm, a mobile app to passive and actively
sense daily rhythms and encourage circadian rhythm stabil-
ity [46] is an example of a new class of applications to help
stabilize daily rhythms. Another focus for future UbiComp
systems could be on passively and interactively cueing light
exposure at the right time [23], and there are obvious pos-
sibilities to incorporate light exposure sensing to build more
accurate personal models (e.g., using wrist-worn light sen-
sors).

While the focus of this study was on unobtrusive detection
of chronotype, visualizations used as part of our post-study
interviews indicated that low-level smartphone data such as
screen use and location information are interpretable by and
meaningful to individuals. One next step is to provide feed-
back to individuals about their patterns of smartphone use so
that they are better aware of usage as pathways for procrasti-
nation, sleep disruption, and sleep inertia at certain times of
the day. Our ongoing work is exploring the role feedback can
have on entrainment, and we are enhancing methods to sta-
bilize the internal clock and identifying technological path-
ways that may keep people (including even late chronotypes)
up later than planned.

To summarize, the field of UbiComp can benefit in multi-
ple ways from taking a circadian perspective in order to con-
tribute to the creation of systems that both measure and stabi-

lize individual rhythms. Such developments would have po-
tentially profound impacts on well-being, mood, and perfor-
mance.

Limitations
For this study, we used screen on-off as a low-cost indica-
tor of activity. Of course, screen-on may not always repre-
sent active interactions. To address this issue, the notion of
an interaction could be further refined by taking screen un-
lock and application usage into consideration. Also, all of the
participants in our study are heavy smartphone users, with at
least six months of use prior to our study. Thus while our de-
veloped algorithm works particularly well for such a popula-
tion (young and habituated smartphone users), it might not be
scalable for a generalized user base. Given that the study pop-
ulation is relatively small with mostly male participants, there
is more work to be done in determining how robust and gen-
eralizable our algorithm is. Nonetheless, our research tech-
niques for identifying behavioral traits and biomarkers from
sleep onset and duration can be applied across diverse pop-
ulations, where an alternate and more appropriate method of
sleep measurement could simply be used.

CONCLUSION
For most of us, our daily lives no longer depend on the posi-
tion of the sun but our biochemistry still does. Temporal pref-
erence, otherwise known as chronotype, has a direct impact
on our biochemistry and resulting performance across almost
every activity. This has significant implications for how Ubi-
comp systems measure and respond to individual circadian
rhythms. In our study, participants’ smartphone patterns var-
ied according to their chronotype, corresponding closely to
expected circadian inputs: sleep duration, social jetlag, and
sleep inertia. We have demonstrated how simple sensing ap-
proaches can measure individual sleep and detect circadian
dyssynchrony over relatively long periods of time. A class
of circadian-based technologies, which are both dynamically
aware of variations in our circadian rhythms and can also help
stabilize them, opens up an exciting new opportunity for per-
sonal computing. The UbiComp community is uniquely po-
sitioned to create and shape such circadian-friendly systems.
Incorporating an awareness of individual biochemical varia-
tions could have a significant impact on a wide range of tech-
nologies and help support increased well-being, productivity,
and higher quality of sleep — and along the way, potentially
help each of us be healthier, wealthier, and wiser.
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