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ABSTRACT
Various wearable sensors capturing body vibration, jaw movement,
hand gesture, etc., have shown promise in detecting when one is
currently eating. However, based on existing literature and user
surveys conducted in this study, we argue that a Just-in-Time eat-
ing intervention, triggered upon detecting a current eating event,
is sub-optimal. An eating intervention triggered at “About-to-Eat”
moments could provide users with a further opportunity to adopt
a better and healthier eating behavior. In this work, we present a
wearable sensing framework that predicts “About-to-Eat” moments
and the “Time until the Next Eating Event”. The wearable sens-
ing framework consists of an array of sensors that capture physical
activity, location, heart rate, electrodermal activity, skin tempera-
ture and caloric expenditure. Using signal processing and machine
learning on this raw multimodal sensor stream, we train an “About-
to-Eat” moment classifier that reaches an average recall of 77%.
The “Time until the Next Eating Event” regression model attains
a correlation coefficient of 0.49. Personalization further increases
the performance of both of the models to an average recall of 85%
and correlation coefficient of 0.65. The contributions of this paper
include user surveys related to this problem, the design of a sys-
tem to predict about to eat moments and a regression model used
to train multimodal sensory data in real time for potential eating
interventions for the user.
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1. INTRODUCTION
Irregular eating habits and disproportionate or inadequate dietary

behaviors may increase the likelihood of severe health issues, in-
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cluding obesity. According to the World Health Organization (WHO),
more than 1.9 billion adults 18 years and older were overweight in
2014 [9]. In the United States, two out of every three adults is con-
sidered overweight or obese, which cost about 147 billion US dol-
lars in the year 2000 [2]. Obesity is a leading cause of preventable
death second only to smoking, resulting in 2.5 million deaths per
year [3]. In order to tackle this obesity epidemic, we need to look
at its root cause, which is the energy imbalance between physical
activity and eating. Although ubiquitous and wearable technolo-
gies (e.g., fitbit [7]) have already been proven successful at physi-
cal activity estimation, tracking of eating events is yet to be popular
among most users. Manual self-reporting of various eating events
with the help of a mobile device is the most common food jour-
naling tool (Fitbit [7], MyFitnessPal [4], Caroll et al. [16]). How-
ever, the required high level of engagement very quickly leads the
users towards fatigue and to lower level of compliance as the nov-
elty fades away [15, 19, 17]. Many recent studies have proposed
semi-automatic and fully automatic food journaling tools. These
tools employ different sensor systems (e.g., camera, accelerome-
ter, microphone) and human-in-the-loop techniques (e.g., Amazon
Mechanical Turk, contextual recall interface) in order to address
the problem with manual self-reporting of eating event. We present
a systematic review of different eating event detection/tracking so-
lutions in the Related Work section.

Although a passive current eating event detector/tracker could
be very useful for building self-monitoring or self-reflective inter-
faces, for a Just-in-Time eating intervention, detecting the current
eating event itself is insufficient. What we really need is to be
able to detect moments when we are “about to eat” so that we can
trigger healthy eating interventions just prior to the actual eating
events. The intuition behind this claim is that, in order to change
the course of action towards better and healthier eating behavior,
Just-in-Time interventions might better influence users if they are
triggered just prior to an actual eating event. Wansink et al. showed
in a recent study [44] that adults consume about 92% of what we
serve ourselves on our dinner plates, irrespective of our perceived
self-control, emotional state or other external variables. As a result
once the process of eating has begun, it is more difficult to alter or
stop this process in the interest of health. There is almost no prior
work that addressed this challenge of detecting “About-to-Eat” mo-
ments. Whether or not it is possible to tell ahead of time that one
is going to have an eating event in the next N minutes using multi-
modal sensor data is the primary research question in this paper.



Technique Study Sensor Information
Manual Self-Report Fitbit [7], MyFitnessPal [4], Caroll et al. [16] - -
Contextual Recall Arab et al. [14], Reddy et al. [36] Camera Photos of Food
Crowd-sourcing Noronha et al. [32], Thomaz et al. [41] Camera Photos of Food
Passive Sensing Stellar and Shrager [39] Strain Gauge Tongue Pressure and

Flexing during Chewing
Passive Sensing Yatani and Truong [46], Amft et al. [12, 11, 13] Microphone Body Sound

Shuzo et al. [38]
Passive Sensing Amft et al. [10], Dong et al. [20] Inertial Sensors Arm Movement

Thomaz et al. [40]
Passive Sensing Kalantarian et al. [25], Rahman et al. [35] Piezo-electric Sensor Swallow and Mastication

Sazonov et al. [37]
Passive Sensing Kong and Tan [26], Zhu et al.[47] Camera Food Amount and Type
Passive Sensing Liu et al. [27] Microphone and Camera Chewing, Photo of Food
Passive Sensing Thomaz et al. [42] Microphone Ambient Sound

Instrumented Utensil Kadomura et al. [24] Bio-impedance Food Chemistry
Color Food Color

Inertial Sensor Arm Movement
Scanning Shopping Mankoff et al. [28] OCR Scanner Name of Food items

Receipts Nutritional Content

Table 1: Overview of the eating event detection/food journaling related literature

In this work, we present a wearable sensing framework that pre-
dicts “About-to-Eat” moments and the “Time until the Next Eating
Event”. We use an array of sensors that are currently not available
in a single device. Therefore, for the sake of the experiment, we use
a Microsoft Band [8], an Affectiva Q sensor [1], a wearable micro-
phone, and an Android smartphone application. Using Microsoft
Band [8], we passively and continuously captured users’ physi-
cal movement (raw accelerometer, gyroscope, step count, speed),
caloric expenditure, heart rate, skin temperature, etc. The Affectiva
Q sensor [1] also has a form factor of a wrist-band and measures
electrodermal activity, which is a good indicator of psychological
arousal. We used a wearable microphone (similar to BodyBeat
[35]) that continuously monitors chewing and swallowing sounds
and detects current eating events. Lastly, a smartphone was used
for continuous and passive capture of GPS location and for record-
ing self-reports before and after every eating event. Using all these
physical and physiological variables, we extracted window-level
features, selected relevant feature subsets and trained machine learn-
ing models that predict the “Time until the Next Eating Event” and
detect “About-to-Eat” moments.

2. RELATED WORK

2.1 Eating Event Tracking
Table 1 outlines the related works in the area of eating track-

ing and food journaling. The traditional way of doing food jour-
naling is through various self-reporting tools such as paper diaries
or mobile devices. Many wearable fitness trackers (e.g., fitbit [7])
and a few commercial smartphone applications (e.g., myfitnesspal
[4]) provide their users with a food database to help them with the
manual food logging. However, this method is still very time con-
suming and typically requires high level of engagement, which can
quickly lead to lower level of compliance [15, 19]. In a very recent
study on food journaling, Cordeiro et al. found that users’ forget-
fulness, difficulty to log and privacy concerns in social settings are
some of the main cause of a low level of compliance [18]. As one
misses food journal entries, slowly the food journal loses its value
and credibility, which eventually leads them to abandoning the tool.

Researchers have been trying to develop automatic and passive
sensing mechanisms to detect eating events in order to address
these problems, but most solutions have included manual self-report.
Some researchers have resorted to human computation or crowd-

sourcing to tackle this problem given its difficulty. [32, 41]. Users
have taken photos of their food using some wearable camera or
smartphone’s built-in camera, after which the photos are processed
and uploaded to online crowdsourcing frameworks to get labels and
nutritional information associated with the food. However, many
users are resistant to the idea of sharing continuous unfiltered pic-
tures with crowd workers. Some studies automated the process of
food labeling using computer vision algorithms to recognize food
[26, 47]. Food identification from pictures is a very difficult task
for both humans and computer vision algorithms, due to various
confounding factors including lighting conditions, quality of pho-
tos and type of food. In 1985, Stellar and Shrager used an oral strain
gauge that measured tongue pressure and flexing during chewing to
monitor eating events throughout the day [39]. More recently, Amft
et al. [12, 11, 13] and Yatani and Truong [46] used wearable micro-
phones to detect different eating events by recognizing the sounds
that are generated in the process of mastication, or swallowing.
Similarly, some other studies explored the applicability of body-
worn inertial sensors to detect characteristic arm movements dur-
ing eating [10, 20, 40]. Some studies used multiple sensor streams
instead of relying on one and demonstrated an increase of perfor-
mance of a current eating detector [27]. Although none of them
have really taken off, the design and implementation of these ubiq-
uitous wearable technologies have inspired us for this study. Some
studies instrumented utensils related to eating in order to capture
eating events. For example, Kadomura et al. instrumented a fork
using bio-impedance, color and inertial sensor and detected eating
related activities [24]. Although instrumentation of such utensils
may work very well for constrained situations, this technique’s ma-
jor shortcoming comes from the fact that we typically don’t carry a
particular eating utensil and use it repeatedly. Mankoff et al. stud-
ied some indirect measures of eating behavior by processing and
analyzing the name of the food items in shopping receipts [28].

Many of the techniques outlined in Table 1 can track current eat-
ing events in real time, which can be useful for building a self-
reflective tool. We argue in this paper that, from an active eating
intervention perspective, just current eating event tracking is not
enough. Predictability of the “About-to-Eat” event is very impor-
tant for Just-in-Time interventions, which we discuss next.

2.2 Just-in-Time Intervention
Many prior research efforts in a variety of health domains also

found that timing of when to intervene is a crucial part of the gen-



eral framework of Behavioral Intervention Technologies (BITs) [29].
Just-in-Time interventions are crafted to provide support at the op-
portune moment so that positive behaviors can be enlisted [30].
Many Just-in-Time interventions are triggered upon detecting cer-
tain events or conditions which are deemed as the optimal moment
for intervention. Such optimal moments are often associated with
high risk or vulnerability coupled with an ineffective coping re-
sponse, which may easily lead someone towards decreased self-
efficacy and possibly to relapse [45]. Many researchers working in
the area of alcohol, drug problems, smoking addiction and stress
[21, 45] used high risk moments as opportune moments for trig-
gering Just-in-Time interventions as patient gets the opportunity
to cope, divert or circumvent the course of life which constitutes
the negative health outcome. For example, a Just-in-Time inter-
vention for a recovering alcoholic patient might be a warning from
the mobile device carried by the patient when it detects that she is
approaching a liquor store. Similar Just-in-Time interventions are
also explored in the context of smoking cessation where interven-
tions are triggered when the participants have a high urge to smoke
and just prior to a smoking event. In another recent work, Pina
et al. [33] studied just-in-time stress coping interventions for par-
ents of children with ADHD and found that interventions prompted
just before a full escalation of stress were more useful as they were
especially receptive to an intervention strategy at that time. Now,
in the context of the Just-in-Time eating intervention the question
is, “What is the optimal moment to nudge or intervene in order to
change the course of one’s action towards better and healthier eat-
ing behavior?” In a very recent study, Wansink et al. [44] showed
that we (adults) are highly likely to eat close to the entirety of what
we serve ourselves irrespective of our perceived self-control, emo-
tional state or other external variables. Therefore, we argue that
just-in-time interventions for eating disorders should be delivered
before the eating event. Although prior work demonstrated ubiq-
uitous and wearable technologies for automatic and passive eating
event detection in real time, no work, to our knowledge, proposed
similar technology for “About-to-Eat” event prediction.

3. EATING TRACKING AND
INTERVENTION SURVEY

We conducted an eating tracking and intervention survey to learn
about the pitfalls of using existing food journaling tools and to
sketch the design considerations for a Just-in-Time eating interven-
tion. This survey not only informed us about the gap in existing
eating tracking practices but also helped us to realize the impor-
tance of the “About-to-Eat” moments prediction for designing an
effective Just-in-Time eating intervention. We surveyed 75 partic-
ipants (30 female, 45 male), who were recruited from a research
division of a technology company in the United States via its’ lo-
cal mailing list. The age of the participants varied from 17 to 56
with a median age of 34.5. The height ranged from 60 to 75 inches
with a median height of 69 inches. The weight ranged from 102
lbs to 280 lbs with a median weight of 156 pounds. The participant
pool was also diverse in terms of their Body Mass Index (BMI)
scores. The percentage of participants falling under the categories
of underweight, normal, overweight and obese are respectively 1%,
63.2%, 25% and 10.8%. Figure 1 shows the survey results.

All of the survey participants were first asked about the types of
eating tracking or food journaling tools they had ever used. While
responding to this question, 34 out of 75 respondents shared that
they had never used any such tools. Other responses included using
a food diary (27 respondents), smartphone applications (21 respon-
dents), or websites (2 respondents) for food tracking. Participants
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Figure 1: Eating tracking and intervention survey results.

who had ever used any food tracking tools were then also asked,
“How long did you use the tool?”. About 48.9% of the respon-
dents told us that they had used the tools for less than a month,
while only 24.4%, 9.7% and 17.0% of the respondents have used
the tool respectively for 1-6 months, 6-12 months and more than
a year. Responding to: “Do you still use the tool now?” an over-
whelming majority (65 out of 75 respondents) shared that they do
not use the eating tracking tools anymore. These statistics clearly
show that most of the existing food tracking tools were used for
only a brief period of time and then the lack of novelty and high
level of engagement have led the majority (86.7%) of the users to
quit. A recent study on food journaling conducted by Cordeiro et
al. [18] echo the same findings of low levels of compliance with
food journaling tools.

We asked our survey participants a few more questions related
to interventions. In order to learn about users’ intervention tim-
ing preferences, the participants were asked “If you had a smart-
phone application that could assist you in healthy eating decisions,
when would you want the app to intervene?”. The most common
response (33 out of 75) was that they wanted the application to
intervene right before a meal or a snack. Thus about 43% of the
respondents preferred to be intervened during the “About-to-Eat”
moments to be nudged towards healthy eating decision making.
This result backs up the fundamental premise of this paper: the
usefulness of “About-to-Eat” moment detection. It clearly shows
that there is an agreement between our assumption about the use-
fulness of the “About-to-Eat” moment detection and the preference
of users. Some qualitative, open-ended responses included: “If the
app could intervene before (or at the start) of a snack to remind
me of my calorie intake for the day and make me more conscious
of my choices that would be ideal”, “Maybe at restaurants, to help
me decide what to order.”, “Before meal preparation”, etc. Both
the quantitative and qualitative feedback indicated that most of the
participants wanted the interventions to be triggered right before an
eating event (either a meal or a snack) at home or at a restaurant,
preferably before serving or ordering. One participant nicely sum-
marized it all by stating: “a little before I get hungry, just in time
for me to make a good decision and then have time to take action
on it”.

In order to identify potential smartphone-based eating interven-
tion, our survey also asked “What would you want a healthy eating
smartphone app to do for you?”. 42 out of 75 respondents wanted



to use a smartphone application calorie calculator for the food that
they are about to eat. 20 respondents wanted to receive a reminder
to eat a balanced meal. 36 survey participants wanted to receive a
reminder of calorie allowance. 37 people wanted to see a visualiza-
tion of what has been eaten so far. A few participants (5) wanted
a breakdown of calories from protein, carbohydrates, fat and even
sodium content. One participant reported, “For me it’s less about
calories and more about varied intake - my favorite apps were ones
that helped me keep track of food groups and nutrients. It was help-
ful to realize I’d hardly eaten any veggies, or I was over on fats”.
Another interesting suggestion was related to drinking water. It said
“Remind me to drink 8 glasses of water, and even track hydration
vs dehydration.”

4. DATA COLLECTION
“About-to-Eat” moments are temporal episodes that precede an

eating event (e.g., breakfast, lunch, dinner or snack). In this study
we wanted to explore if we can predict “About-to-Eat” moments
with the help of a set of common ubiquitous and wearable tech-
nologies. In order to achieve this goal we recruited 8 participants
(3 female, 5 male) for this study from a research division of a tech-
nology company. The participants’ age ranged from 26 to 54 years.
After we received our participants consent, they were asked to fill
in a pre-experimental survey in order to obtain background infor-
mation about our participants. They were then introduced to the
four ubiquitous and wearable technologies and were asked to use
these technologies for 5 days.

4.1 Ubiquitous and Wearable Technologies

Microphone
Microsoft Band

EDA Sensor

Smartphone 

Figure 2: The ubiquitous and wearable technologies used for our
data collection is outlined here.

Prior work on binge eating behavior and emotional eating has
demonstrated that several physiological variables including heart
rate, electrodermal activity (EDA), finger pulse amplitude and heart
rate variability show different trends during food exposure period
[43, 31]. Informed by these prior works, we incorporated some of
these relevant sensor streams like heart rate and EDA in our work.
In addition to that, eating is a very habitual daily activity. Knowing
location (GPS) traces, the timing and duration of various physical
activity traces (step count, calorie expenditure, speed traces), when
users do particular types of gestures/movements (via accelerome-
ter and gyroscope) could all help in predicting “About-to-Eat” mo-
ments. In order to capture all these relevant physical and physiolog-
ical health variables, we used four wearable technologies including
a Microsoft Band [8], an Affectiva Q sensor [1], a wearable mi-
crophone and an Android smartphone. Figure 2 shows all the four
technologies on a user. Table 2 lists all the raw sensor streams and
their preprocessing steps.

The Wearable Microphone was used to detect current eating events
by detecting characteristic eating sounds like mastication and swal-

lowing. The microphone was directly attached to the skin around
Laryngopharynx area in the neck. The wearable microphone was
made using an off-the-shelf electret microphone [6], Teensy ARM
microcontroller unit [5] and a SD card interface. Although detect-
ing current eating events were not the focus of this paper, we used
it to explore how this microphone-based eating moment detection
works in the wild. In addition to that, a current eating event de-
tector can obviate the need of manual logging for training or per-
sonalizing “About-to-Eat” moment prediction model. The Android
Smartphone Application was used for three reasons. Firstly, the
smartphone application continuously and passively records GPS
and network location in terms of latitude and longitude at every
minute. Secondly, the smartphone application receives Microsoft
Band’s sensor data over Bluetooth and stores it in its external mem-
ory. We have used Microsoft Band’s software development kit [8]
for developing this part of the application. Thirdly, it allows the
participants to manually self-report the start and end of a particu-
lar eating event, affect, stress level, craving, hunger, satiation. In
the next subsection, we discuss the user interface of the android
smartphone application.

4.2 Self-Report User Interface
The Android smartphone application contains a self-report user

interface, which is shown in Figure 3. The primary goal of the
self-report user interface was to enable participants to log the start-
ing time and ending time of different eating events. Right before
and after an actual eating event, our participants can declare ground
truth start time and end time of an eating event simply by tapping
on a button (shown in Figure 3b). For the sake of consistency of our
data collection, we explicitly advised our participants to tap on the
“Start of Eating Event” button exactly before having the first bite
(neither while deciding which food to order/cook nor while waiting
for the food to be cooked/prepared in a home or restaurant setting).
Similarly, the end of the eating event was defined by the moments
after the last bite or gulp of the food and can be self-reported by
tapping on the “End of Eating Event” button. In addition to this,
the UI elicits other contextual and perceptual information around
the eating event. When one taps on the “Start of Eating Event” but-
ton in Figure 3b, the user is also asked about their current emotional
state using the Photographic Affect Meter (PAM in Figure 3c) [34],
meal type (Breakfast, Brunch, Lunch, Dinner or Snack), intensity
of desire/craving and hunger (in a numeric scale from 1 to 7) right
before an eating event. Following an actual eating event, the partic-
ipant can also log their emotional state, amount of food consumed,
satiation and healthiness (all using a numeric scale from 1 to 7) of
the food.

5. PREDICTING “ABOUT-TO-EAT”
MOMENTS

Modeling “About-to-Eat” moments consists of different steps in-
cluding data cleaning and preprocessing, feature extraction, feature
selection and machine learning.

5.1 Preprocessing
The primary purpose of the data preprocessing step is to make

sure that the raw sensor data streams are clean and are off high fi-
delity. All the sensor streams captured by the ubiquitous computing
frameworks (i.e., Microsoft Band, Affective Q sensor and Android
application) are time-stamped with their own real-time clock. At
first, the sensor streams are time aligned. The Microsoft Band’s
sampling rate varies a bit, so The sensor streams captured by the
Microsoft Band are resampled to a fixed frequency. Microsoft Band



Sensor Stream Preprocessing

Microsoft Band

Heart Rate Resampling
Skin Temperature Resampling
Accelerometer Norm of 3 dimensional linear acceleration
Gyroscope Norm of 3 dimensional angular acceleration
Step Count Resampling, Differentiation to estimate instantaneous value
Calorie Resampling, Differentiation to estimate instantaneous value
Speed Resampling

Affectiva Q Sensor Electrodermal Activity Remove mean, Lowpass filter with cutoff at 0.05Hz is applied to estimate EDA
Tonic signal, Bandpass filter with cutoffs at 0.05Hz and 1Hz is applied to esti-
mate EDA Phasic signal

Wearable Microphone Body Sound Chewing and Swallowing Recognition
Smartphone Application GPS and Network Location Extracted Latitude and Longitude

Self-Report Log start and end time of eating, Affect, Stress, Craving, Hunger, Satiation

Table 2: The list of ubiquitous and wearable technologies used for data collection

(a) (b) (c) (d) (e)

Figure 3: (a) Homepage of the Android application (b) Tap at the Self-report button in the homepage prompts user to select between “Start
of Eating Event” or “End of Eating Event” button. (c) After tapping on either “Start of Eating Event” or “End of eating event” button, the
user is at first asked to record their current emotional state using Photographic Affect Meter (PAM). (d) User is then asked about their type of
meal, craving, hunger and stress using this questionnaire at the start of an eating event. (e) User inputs their satisfaction, healthiness, amount
of consumption and stress at the end of an eating event.

returns cumulative values for both the calorie expenditure and the
step count. To get the instantaneous values for both of these sen-
sor streams, we use differentiation on the interpolated signal. The
raw Electrodermal Activity (EDA) signal can be decomposed into
two parts: the long term and instantaneous response of physiolog-
ical arousal (called tonic and phasic respectively). The long term
slow changing part of the raw EDA signal is the EDA tonic sig-
nal, where the faster changing part is considered as the EDA phasic
signal. We applied a Butterworth low pass filter with a cutoff fre-
quency of 0.05 Hz to estimate the EDA tonic signal and used a band
pass filter with cutoff frequencies at 0.05 and 1 Hz to estimate the
EDA phasic signal. Table 2 lists all the preprocessing steps applied
to the raw sensor streams.

5.2 Feature Extraction
The first step of feature extraction starts with windowing the pro-

cessed sensor time series and here we have consider two types of
windowing parameters: the feature extraction window size and fea-
ture extraction window shift size. While the feature extraction win-
dow size determines the duration of processed sensor time series
data in a particular window, the shift determines the amount of time
shift in two adjacent windows. A small feature extraction window
size could capture instantaneous characteristics or properties in the
sensor time series, while features extracted with a coarse feature
extraction window size could provide information about long term

trend. As we wanted to determine an optimal feature extraction
window size, we used different window sizes from 5 to 120 min-
utes. The optimal window length is determined empirically based
on the performance of our prediction model. Irrespective of the dif-
ferences among different feature extraction window sizes, we have
used a constant window shift of one minute. It means that nth win-
dow is shifted by one minute in comparison to (n � 1)th window.
Also note that the window shift size determines the resolution of
the prediction/inference, as the machine learning models outputs a
label for each window.

In order to extract features, a set of statistical functions was ap-
plied on each window. Table 3 lists all of the statistical functions
that were applied for feature extraction to capture the different as-
pects of the windowed sensor streams. In addition to all of these
sensor streams based window-level features, we extracted two addi-
tional types of features corresponding to each window. Firstly, we
used current time in minutes since the start of the day as a feature.
The second feature type was previous eating event-based feature.
It includes the time since the last eating event in minutes and the
number of previous eating events since the beginning of the day. In
order to detect eating events (not to predict them) the wearable mi-
crophone along with a mastication and swallowing sound detection
algorithm can be used. We followed the mastication and swallow-
ing sound detection algorithm presented in a recent study [35]. In
total, we extracted 158 window-level features.



Type Statistical Functions Acronym

Extremes
Minimum min
Maximum max

Average Mean mean
Root Mean Square RMS

Quartiles 1st, 2nd and 3rd Quartile qrtl25, qrtl50 qrtl75

Dispersion Standard Deviation std
Interquartile Range iqrl

Peaks
Number of peaks numOfPeaks
Mean Distance of Peaks meanDistPeaks
Mean Amplitude of Peaks meanAmpPeaks

Rate of Change Mean Crossing Rate mcr
Shape Linear Regression Slope slope

Table 3: The list of statistical functions applied to the windowed
sensor data for extracting window-level features

5.3 Feature Selection
In our work, we used the Correlation-based Feature Selection

(CFS) criteria [23] along with the best first search to select the
subset of features. The CFS algorithm evaluates the goodness of
features based on two criteria: firstly, all the features in the fea-
ture subset are highly indicative of the target class, and secondly,
the features in the feature subset are highly uncorrelated with each
other, thus each feature can provide complementary information.
Figure 4 shows the contribution of different feature groups for pre-
dicting “About-to-Eat” moments. How much a drop in performance
a classifier concedes if a person-independent “About-to-Eat” mo-
ment classifier is trained without a particular group of features, is
the metric we used to estimate the contribution of that particular
feature group. As a performance metric we used the F measure.

As can be seen in Figure 4, dropping all the feature groups in-
dividually causes a bit of performance drop except location fea-
tures. When we dropped location features, we see an increase
in the performance of our person-independent “About-to-Eat” mo-
ments detector. It basically means that the location-based features
fail to capture any general trends about “About-to-Eat” moments
and they introduce a lot of noise in the feature-space. As a result
dropping the location-based features are more beneficial for train-
ing person-independent model. This is because geo-location dur-
ing “About-to-Eat” moments are highly person specific traits (e.g.,
eating habit, occupational constraints), thus it cannot find any gen-
eral trends that generalizes across individuals. The top contribut-
ing feature was step count followed by calorie expenditure. Step
count at certain time from certain location (e.g., home or work-
place) towards another location (e.g., restaurants and cafes) could
give vital information about an upcoming eating event. Similarly,
certain amount of calorie expenditure could also be an indirect in-
dicator of hunger or craving and thus it could be informative about
an “About-to-Eat” moments. Among the inertial sensors, the gyro-
scope features contributed more than accelerometer features, as it
could capture the characteristic hand gesture from activities prior
to an eating event like typing on a keyboard, opening door, walking
etc. The current time also contributed a bit, as our eating is gov-
erned by a routine. But as different participants had slightly differ-
ent routines, it did not turn out to be the top most feature for the
generalized model. It is also interesting to note from Figure 4 that
both EDA and heart rate contributed minimally towards the “About-
to-Eat” moment detector. Notice that the feature contribution here
is estimated with respect to a person-independent “About-to-Eat”
classifier, so feature group (like location) that did not contribute
for person-independent model, could contribute significantly for a
person-dependent model. We discuss person-dependent features in
the Personalized Model section below.
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Figure 4: Contribution of different feature groups for training a
Tree Bagger person-independent “About-to-Eat” event classifier

5.4 Training “About-to-Eat” Moment
Detector

In order to train our “About-to-Eat” moment detector we, at first,
trained an “About-to-Eat” moment classifier that differentiates be-
tween the “About-to-Eat” moments and the moments further in the
past. Secondly, we also trained a regression model that predicts the
“Time until the Next Eating Event”.

5.4.1 “About-to-Eat” Moment Classifier
“About-to-Eat” moment is defined by a certain time period pre-

ceding the start of an eating event. Here this time period is called
“About-to-Eat” definition window. In order to label different fea-
ture extraction windows into the two different classes for this clas-
sifier (which are “About-to-Eat” moment or “Non-About-to-Eat”
moment), we used the end point of the feature extraction win-
dow. If the end point of the feature extraction window is within
the definition window, we label the entire feature extraction win-
dow as “About-to-Eat” moment as the current feature extraction
window already entered the “About-to-Eat” moment definition win-
dow. The goal of our classifier is to distinguish between these two
classes. As our feature selection method suggested that location
features introduced noise in the feature space, we did not use any
location-based features for training our person-independent classi-
fier. Table 4 presents the performance of different “About-to-Eat”
event classifiers with and without feature selection from a Leave-
One-Person-Out (LOPO) cross-validation experiment. From Lin-
ear Model to Tree-based and Support Vector Machine (SVM)-based
classifiers, as we increase the complexity of the model, the per-
formance of the classifier increased. It tells us that probably the
non-linear, highly convoluted distribution of features in the fea-
ture space demands non-linear mapping from the features to the
class. As can be seen in Table 4 Tree Bagger model (also known
as Random Forest) outperforms all the rest of the models for both
with and without feature selection. The Tree Bagger trained on a
selected feature subset outperforms all the rest machine learning
models and reaches a recall, precision and F score of respectively
0.77, 0.67 and 0.69. This result shows that a person-independent
“About-to-Eat” detector, trained on a few behavioral information
and with simple machine learning algorithm, can achieve a reason-
able performance.

In order to investigate how the feature extraction window size
affects the overall performance of our classifier and in order to se-
lect an optimal feature extraction window size, we extracted our
features with different window sizes ranging from 5 minutes to 120
minutes by keeping all the other parameters constant and estimat-
ing the trained classifier’s performance. Figure 5 shows how the
performance of our classifier changes as the feature extraction win-
dow size changes. Both very small and coarse feature extraction



Without Feat. Sel. With Feat. Sel.
Model R P F R P F

Linear Model 0.63 0.55 0.61 0.67 0.65 0.66
RepTree 0.61 0.49 0.60 0.65 0.62 0.64

SVM 0.63 0.60 0.62 0.67 0.62 0.66
Tree Bagger 0.74 0.59 0.64 0.77 0.67 0.69

Table 4: Performance of person-independent “About-to-Eat” event
classifier trained with and without CFS feature selection in terms
of Recall(R) and Precision (P) and F measure (F).

window sizes we have bigger disparity between precision and re-
call. For feature extraction window size of 60 to 80 minutes we
have high, yet more consistent performance with respect to recall
and precision. Very small feature extraction window sizes are sus-
ceptible to noise, while very coarse window size fails to capture
the recent trends in the sensor time series which are essential for
building our “About-to-Eat” classifier. Lastly, notice that feature
extraction window size does not change the granularity or resolu-
tion of our “About-to-Eat” classifier’s inference, as we kept feature
extraction window shift constant (1 minute).
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Figure 5: F measure of the “About-to-Eat” event classifier with
Tree Bagger across different feature extraction window sizes

Similar to the feature extraction window size, the “About-to-Eat”
definition window size plays a significant role. As we increase the
size of the definition window size, we make the “About-to-Eat”
moments less stringent. In order to further investigate any effect of
different definition window sizes on the performance of our classi-
fier, we evaluate our classifier for different definition window sizes.
The definition window size will certainly have an effect on the per-
formance of our classifier also changes, which can be seen in Figure
6. As we increase the definition window size, the performance of
the “About-to-Eat” moment detection increases. In other words,
if we increase the definition window size, the “About-to-Eat” mo-
ment detector has more opportunity to capture the subtle patterns
in the feature space and predict the “About-to-Eat” moments cor-
rectly. However, practically too big of a definition window size is
not very useful, as we want to trigger our intervention as close to
the start of an eating event as possible.

5.4.2 “Time until the Next Eating Event”
Regression Model

In order to predict the “Time until the Next Eating Event”, we
trained several regression models including linear, RepTree, SMO
and Tree Bagger regression model using Weka toolbox [22]. The
preprocessing, feature extraction and feature selection stage remained
the same. The “Time until the Next Eating Event” was estimated
from the end point of every feature extraction window in minutes.
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Figure 6: Performance of the “About-to-Eat” event classifier with
Tree Bagger across different different “About-to-Eat” definition
window sizes
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Figure 7: Shows how the predicted “Time until the Next Eating
Event” matches with the reference value. The model is trained with
Tree Bagger with CFS feature selection

If the time till the next eating event from the endpoint of any partic-
ular window (of feature extraction) was 5 hours or more, then we
simply ignored those windows as those windows capture very dif-
ferent life events (e.g., sleeping) which are irrelevant to the problem
at hand. Table 5 illustrates the results of different types of regres-
sion models with and without CFS feature selection. We estimated
the performance of different regression models in terms of the Pear-
son correlation coefficient (⇢) and the mean absolute error (MAE).
The best regression performance of 0.49 Pearson correlation coef-
ficient and 0.18 of mean absolute error is achieved again with the
Tree Bagger when it is trained with the selected feature subset. Fig-
ure 7 shows how our “Time until the Next Eating Event” regression
model performs with respect to the reference. The reference “Time
until the Next Eating Event” value is considered to be zero dur-
ing the eating event. Notice that the lowest values of the predicted
“Time until the Next Eating Event” graph lies right before the start
of an eating event.

Without Feat. Sel. With Feat. Sel.
Model ⇢ MAE ⇢ MAE

Linear Regression 0.10 0.47 0.19 0.26
RepTree 0.27 0.22 0.36 0.22

SMO Regression 0.28 0.25 0.33 0.23
Tree Bagger 0.40 0.20 0.49 0.18

Table 5: Performance of “Time until the Next Eating Event” regres-
sion model trained with and without CFS feature selection. The
performance is measured in terms of Pearson Correlation Coef-
ficient (⇢) and Mean Absolute Error (MAE) from a Leave-One-
Person-Out (LOPO) cross-validation experiment.



In order to identify the optimal feature extraction window size,
we extracted features with different window sizes and evaluated
Tree Bagger model with feature selection. Figure 8 shows the per-
formance of prediction model reaches its highest value when the
window size is 100 minutes. Features extracted with any window
size lower or greater than 100 minutes fails to capture the full dy-
namics of “About-to-Eat” moments in the sensor streams and thus
fails to reach the best performance. This result echoes the same ob-
servation about the effect of feature extraction window size on the
performance of the model that we presented in Figure 5.
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Figure 8: Correlation coefficient of the “Time until the Next Eat-
ing Event” Tree Bagger regression model across different feature
extraction window sizes

5.4.3 Personalized Model
The performance of both the classification and regression could

be further improved by learning person-dependent models with some
labeled data from the target user, as the model could incorporate the
idiosyncrasies (e.g., person-specific eating pattern, lifestyle) of the
target user. To test our hypothesis, we trained person-dependent
“About-to-Eat” moment classifier on the feature subset selected by
the CFS feature selection and “Time until the Next Eating Event”
regression model with Tree Bagger using 10-fold cross validation.
Notice that in this experiment both train and test set are two mutu-
ally exclusive portion of the data that came from the same person.
The person-dependent “About-to-Eat” moment classifier achieved
a recall, precision and F-score of respectively 0.85, 0.82 and 0.84.
Similarly, when we again trained a person-dependent “Time until
the Next Eating Event” regression model, the performance reached
a Pearson correlation coefficient of 0.65. Both person-dependent
models clearly outperform the person-independent ones, which val-
idates our hypothesis about personalization.

We further investigated on the features that are selected by the
person-specific model. We found that different feature groups con-
tribute differently for predicting “About-to-Eat” moments of dif-
ferent individuals. For example, participant P typically skips his
breakfast and has his lunches at a particular neighborhood right
next to his work place at a particular time of the day. He also has
a quick snack in the afternoon right before he leaves to the gym
to play table tennis with his friends. Later in the evening, he typi-
cally gets his dinner at home. Now, if we look at the top selected
features for training a personalized model, we get location, time
of the day, calorie and step count based features to be the top fea-
ture groups. Just these four groups of features captures his regu-
lar life style around different eating event. As a result the person-
dependent model also could achieve a very high performance with
an F-score of 0.90 (by the “About-to-Eat” moment classifier) and
Pearson correlation coefficient of 0.83 (by “Time until the Next

Eating Event” regression model). Now, if we look at participant
S (who is a home maker and 28 years old), we get a completely
different set of feature groups that have the most information about
the person-dependent model. Unlike participant P, location turned
out to be one of the least informative features for participant S, as
she typically takes all of her meals at home. Inertial (accelerom-
eter and gyroscope) sensor based features are selected as one of
the most informative features as that could pick up various house-
hold chores. Heart rate and EDA-based features contribute more
for training person-dependent model for participant S than they did
for participant P.

6. DISCUSSION
The best person-independent “About-to-Eat” moment classifier

(Tree Bagger) reaches an F-score of 0.69. Similarly, when we
trained a person-independent regression model that tries to predict
the “Time until the Next Eating Event”, we achieved a Pearson
correlation coefficient of 0.49. The performance of the person-
independent models clearly underscores the fact that the sensor
streams captured by wearable wrist bands and a smartphone con-
tain important information about “About-to-Eat” moments and the
“Time until the Next Eating Event”. As person-independent model
captures generalized trends in the feature space (e.g., general eat-
ing schedule, physical variables around “About-to-Eat” moments),
it fails to capture the person-specific traits or idiosyncrasies around
one’s eating behavior. In our analysis we demonstrated that per-
sonalized model could overcome this problem by learning person-
specific trends in the feature space and increased the performance
of “About-to-Eat” moment classifier to an F-score of 0.84 and the
“Time until the Next Eating Event” regression model to a Pearson
correlation coefficient of 0.65. Although in our study we trained
our person-specific model by data from our target user in an of-
fline manner, the multimodal sensor streams along with the online
learning algorithm could learn a fairly accurate person-dependent
“About-to-Eat” model on the fly if the system gets labels to train
on. However, training a person-dependent model in this manner
requires active user engagement and a lot of labeled data. One
alternative to getting labeled data via self-report could be the wear-
able microphone that can tell current eating event. Thus users can
use the wearable microphone along with the other wearable and
smartphone technologies for a few days to generate enough train-
ing data for the person-dependent model to be built. The person-
dependent feature selection analysis clearly shows that the features
used by person-dependent model highly dependent on eating habit
and life style. As the life style and eating habit remained constant
over our rather small data collection period, our person-dependent
model could find some internal trends in the feature space. How-
ever, if one’s life style changes drastically due to a big life event,
the person-dependent model needs to be again calibrated with the
help of more labeled data.

At the end of our data collection through a semi-structured in-
terview, we received qualitative feedback and comments from our
participants on the wearability, form factor, privacy and social ac-
ceptability issues of the ubiquitous and wearable technologies. Al-
though all these different socio-ethical aspects were not considered
in this paper, here we included a limited discussion so that we can
improve them in future iterations. Most of our participants were
accustomed to smartphone and have been using it for telecommu-
nication and entertainment purposes. Although a few of the partic-
ipants requested a bigger font in our smartphone application, over-
all they found it to be sufficient. Many of our participants found
Microsoft Band to be a very useful wearable fitness device. As a
result the inclusion of these two technologies in our data collec-



tion framework was very well received. In fact many of our users
expressed their interest to keep using our smartphone application.
They found it useful as a food logger that helped them to be mindful
about their eating event. However, all the participant found it diffi-
cult to use the wearable microphone that passively tracks different
eating events by detecting mastication and swallowing sound. As
one needs to wear the wearable microphone around the neck, it was
also highly visible. As a result it was not very privacy sensitive.
Many of our participants complained about the social acceptability,
as they had to explain the purpose of the wearable microphone to
their friends and family, which is undesirable and may contribute to
leaving the technology all together. Our participants suggested that
a form factor, which could be easily worn and hidden in clothes for
a long time, could be a more meaningful form factor for the wear-
able microphone, which should be considered for future studies.

7. LIMITATIONS AND FUTURE WORK
Like most studies our study is not without limitations. In order

to explore the feasibility of “About-to-Eat” moment detection, we
collected a limited amount of (8) participant data, where each par-
ticipant recorded data only for a few (5) days. Encouraged by the
promising results of this feasibility study, we want to run a longitu-
dinal study to collect a larger dataset with more participants during
a longer time span. A larger dataset will enable us to test the gener-
alizability of our “About-to-Eat” prediction models. In future, we
want to learn personalized “About-to-Eat” moment detector online
and assess its accuracy. Although we gathered ideas about potential
Just-in-Time eating interventions triggered at “About-to-Eat” mo-
ments in this paper, in our current study these eating interventions
are not triggered in an online manner. This feasibility study with a
limited time span could also not estimate their efficacy of these in-
tervention for behavior change. With our future longitudinal study
we plan to trigger various Just-in-Time eating interventions as the
personalized models detects “About-to-Eat” moment and assess the
efficacy of such a system for behavior change.

There is a huge body of literature that shows the link among
food, emotion and stress [16]. Affect also influences our percep-
tion of hunger and satisfaction. As our existing data collection
scheme already collects information about different affective states
(i.e., emotion and stress), in future we also would like to explore the
relationship between “About-to-Eat” moments and affective states.
Information about various affective states during “About-to-Eat”
moments could also be useful select the most effective Just-in-Time
eating intervention from a pool of interventions.

8. CONCLUSION
In this feasibility study, we explored if we could reliably de-

tect “About-to-Eat” moments and predict the “Time until the Next
Eating Event”. We explored both person-dependent and person-
independent models using a multimodal sensor dataset with four
different ubiquitous and wearable technologies including a Microsoft
Band, an Affectiva Q sensor, a wearable microphone and a smart-
phone. The wearable sensing framework captures physical activity,
location, heart rate, electrodermal activity, skin temperature and
caloric expenditure. Using signal processing and machine learn-
ing on this raw multimodal sensor stream, we trained a person-
independent “About-to-Eat” moment classifier that reaches an av-
erage recall of 0.77. The person-independent “Time until the Next
Eating Event” regression model attains a correlation coefficient of
0.49. By building person-dependent model, we can further boost
the performance of both models.
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