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A ctivity-aware systems have in-
spired novel user interfaces and 
new applications in smart envi-
ronments, surveillance, emer-
gency response, and military 

missions. Systems that recognize human activi-
ties from body-worn sensors can further open 
the door to a world of healthcare applications, 
such as fitness monitoring, eldercare support, 

long-term preventive and 
chronic care, and cognitive 
assistance. Wearable systems 
have the advantage of being 
with the user continuously. So, 
for example, a fitness applica-
tion could use real-time activ-
ity information to encourage 
users to perform opportunis-
tic activities. Furthermore, the 
general public is more likely 
to accept such activity recog-
nition systems because they 
are usually easy to turn off or 
remove.

For systems implementing 
these applications to be practi-
cal, the underlying recognition 
module must detect a variety of 

activities that are performed routinely in many 
different manners by different individuals under 
different environmental conditions. This presents 

the challenge of building systems that can handle 
the real world’s noisy data and complexities. Fur-
thermore, deploying the systems imposes some 
important constraints. The deployment must 
protect the user’s privacy as well as the privacy 
of those with whom the user comes in contact. 
The sensors must be lightweight and unobtru-
sive, and the machine-learning algorithms must 
be trainable without requiring extensive human 
supervision. These constraints have made robust 
recognition systems difficult to engineer.

Over the past four years, we’ve been building 
an automatic activity recognition system using 
on-body sensors. The Mobile Sensing Platform 
(MSP) tackles several of these design and de-
ployment challenges. Moreover, we’ve carried 
out several real-world deployments and user 
studies, using the results to improve the hard-
ware, software design, and activity recognition 
algorithms. The lessons learned have broad rel-
evance to context-aware ubiquitous computing 
applications.

Activity recognition systems
Activity recognition systems typically have three 
main components: 

a low-level sensing module that continuously 
gathers relevant information about activities 
using microphones, accelerometers, light sen-
sors, and so on;

•
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a feature processing and selection 
module that processes the raw sensor 
data into features that help discrimi-
nate between activities; and
a classification module that uses the 
features to infer what activity an in-
dividual or group of individuals is 
engaged in—for example, walking, 
cooking, or having a conversation.

A feature might be low-level informa-
tion, such as frequency content and 
correlation coefficients, or higher-
level information such as the number 
of people present. Because human ac-
tivities are complex and sensor signals 
have varying amounts of noise, classi-
fication algorithms are almost always 
probabilistic.

The MSP system architecture also 
consists of these three activity recogni-
tion components. However, the MSP 
evolved in an iterative process that re-
vealed a core set of component require-
ments after several real-world deploy-
ments. The presentation here of our 
development process includes lessons 
learned at each stage and how the les-
sons contributed to our current system. 

Hardware platform v1.0: 
Wireless multimodal sensing
Many recent wearable systems for ac-
tivity recognition place a single type 
of sensor, typically accelerometers, in 
multiple locations (anywhere from two 
to 12) on the body.1,2 However, this 
approach’s obtrusive usage model has 
limited its mass adoption. In addition, 
its use of a single sensor type restricts 
the range of activities it can recog-
nize—for example, accelerometers are 
mainly useful for inferring a limited set 
of physical activities. 

An alternate approach is to use mul-
tiple sensor types—that is, multimodal 
sensors—and collect data from a single 
body location. Some older research in 
activity and context recognition ex-

•

•

plores this approach.3 Recent stud-
ies have shown that the information 
gained from multimodal sensors can 
offset the information lost when sensor 
readings are collected from a single lo-
cation.4,5 The sensors’ complementary 
cues are also useful for recognizing a 
wider range of activities. For example, 
an accelerometer and audio together 
can detect whether the user is sitting 
versus sitting and watching TV.

For wide-scale adoption of activity 
recognition systems, we hypothesized 
the need for a sensing platform that

packages multimodal sensors into a 
single small device,
avoids using physiological sensors or 
sensors that require direct contact 
with the skin, and
either integrates into a mobile device, 
such as a cell phone, or wirelessly 
transmits data to an external device. 

Originally, we assumed the external de-
vice would log and process the sensor 
streams, so the sensing platform could 
have limited processor capability and 
no local storage.

To better understand the usefulness 

of different sensor modalities in infer-
ring human activities, we designed and 
built a multimodal sensor board that si-
multaneously captured data from seven 
different sensors (see figure 1). We se-
lected the sensors for their general use-
fulness (as evidenced by related work in 
activity inference),4,6,7 small footprint, 
and low power consumption. The sen-
sor board attached to Intel’s iMote, a 
32-bit ARM7-based wireless node, 

•

•
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which communicated with handheld 
devices, desktop computers, and cell 
phones via its Bluetooth RF Communi-
cation (Rfcomm) protocol, USB cable, 
or a compact flash bridge. 

The device was small and lightweight 
enough (1.52 oz/46 g) to wear comfort-
ably for long periods of time. With all 
the sensors running continuously, the 
platform’s first version consumed ap-
proximately 43 mW of power. It could 
run for more than 12 hours on a 200 
mAh Li-Polymer battery. However, 
when streaming data over Bluetooth to 
a cell phone, the battery only ran for 
about four hours.

deployments
Our initial deployments focused on 
gathering real-world activity traces 
for training activity classifiers. We re-
cruited 15 volunteers to wear the MSPs 
as they went about day-to-day activi-
ties, such as walking, climbing stairs, 
cooking, working on a computer, and 
so on. The volunteers generated over 
50 hours of data, which we collected 
over eight noncontiguous weeks.5,8,9 
We based our activity selection on two 
factors: application scenarios that in-

terested us—specifically, those that en-
courage physical activity and support 
eldercare—and prior work in activity 
recognition systems. Focusing on activ-
ities already studied in existing systems 
helped us compare our system’s perfor-
mance with that of others.

In addition, we conducted a larger, 
longitudinal deployment to gather data 
on group interactions and face-to-face 
social networks.10 For this deployment, 

The	MSP	system	architecture	evolved	in		

an	iterative	process	that	revealed	a	core	set		

of	activity	recognition	component	requirements.
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we recruited 24 graduate student vol-
unteers and gathered data on them si-
multaneously for one week per month 
over the course of a year. The result was 
more than 4,400 hours of sensor data 
that we’re currently analyzing offline. 

Lessons learned
Packaging the multimodal sensors into a 
small form factor was an appealing char-
acteristic of the version 1.0 MSP plat-
form. Unfortunately, depending on an 
external device for data processing and 
logging proved to be a problem even be-
fore any serious data collection began.

Communication, storage, and processor 
issues. The Bluetooth connectivity 
wasn’t reliable enough to continuously 

stream sensor data (including audio at 
8 or 16 kHz). The packet losses and in-
termittent connection drops required us 
to switch to a wired solution where the 
sensor board was physically attached to 
a PDA via a USB cable. 

We used this “sensor plus iPAQ” 
combo to collect the data sets we’ve de-
scribed. This solution worked as a tem-
porary research prototype, but it clearly 
wasn’t feasible longer term because it 
required participants to carry a bulky, 
wired device combination simply to 
collect data. We might have been able 
to mitigate the drops by implementing a 
standard transport protocol instead of 
relying on Bluetooth’s Rfcomm stack. 
However, this would provide only a 
partial fix to the problems we encoun-

tered during data collection.
Our initial deployments showed that 

storing and processing data locally would 
significantly increase the data quality (no 
packet loss) and recording duration (via 
compression), while reducing the physi-
cal burden on the participant. Addition-
ally, supporting interactive applications 
that react according to a given activ-
ity or context called for computational 
power sufficient to classify sensor traces 
into usable activity or context labels in 
real time. Some behavior and health-
monitoring applications might also need 
to store the raw sensor data or inferred 
behavior statistics locally for additional 
offline processing to address longer-term 
trends or to infer more complex human 
behavior using models.

Version 1 Version 2
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Sensor description

Electret microphone

Visible light photransistor

3-axis digital accelerometer

Digital barometer temperature
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Digital humidity/temperature

Digital Compass
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Additional sensors on the location board: 3D magnetometers, 3D gyros, and 3D compass
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Figure 1. The	Mobile	Sensing	Platform	hardware,	versions	1.0	and	2.0.,	with	and	without	cases.	Both	MSP	versions	support	seven	
sensors.	In	addition,	version	2.0	offers	a	location	daughterboard	that	includes	additional	3D	sensors.	The	MSP	can	communicate	
wirelessly	with	other	devices	in	real	time	or	store	raw	sensor	data,	features,	or	activity	recognition	results	for	offline	use.



APRIL–JUNE	2008	 PERVASIVE	computing	 35

Privacy. The larger group deployment 
reenforced the importance of consider-
ing privacy aspects of data logging. Col-
lecting sensor data, particularly from a 
microphone, involves recording people 
in unconstrained and unpredictable sit-
uations, both public and private. The 
results can include recorded informa-
tion about uninvolved parties without 
their consent—a scenario that, if raw 
audio is involved, is always unethical 
and often illegal.

We therefore needed the iPAQ’s com-
putational resources to process the raw 
audio data on the fly and record use-
ful features. For example, the system 
needed to record enough information 
to infer that a conversation had oc-
curred but not enough to reconstruct 
the words that were spoken.10

Battery life. Several other problems arose 
from our unconventional use of the PDA 
as a mobile sensor node. The PDA is op-
timized for sporadic, short tasks, which 
is not how we were using it. As a result, 
the PDA batteries didn’t last as long as 
we had anticipated, often keeping us 
from reaching our goal of collecting 8 
to 10 hours of data per day.

Participants found it easy to recharge 
their PDAs overnight but would often 
forget to change the battery midday. So, 
battery life sufficient to support data 
collection and processing during wak-
ing hours (about 12 to 16 hours) was a 
fundamental usability issue.

Sensing and inference module. Not sur-
prisingly, mobile devices are often opti-
mized to support a specific usage model. 
Using these devices for logging or infer-
ence can significantly reduce the battery 
life and computational resources, thereby 
compromising the device’s usability. Fur-
thermore, integrated solutions that pack-
age sensors into a mobile device might 
not provide all the flexibility an activity 
recognition system needs.

Depending on the activities being 
modeled and the users’ preferences, the 
system and its sensors might need to be 
located away from where the user car-
ries his or her mobile device. As a result, 
it might be preferable for the system to 
operate as a standalone device with its 
own CPU and battery for sensing and 
inference. The device could then com-
municate with other mobile devices as 
needed without taxing their resources 
or limiting their usability.

Location sensing. The different MSP 
sensors were sufficient for recognizing 
the range of daily activities and inter-
actions that interested us. However, 
geographical location information has 
proved helpful in activity recognition.11 
For example, it’s unlikely that a user in 
the middle of a lake is riding in an el-

evator. We therefore sometimes used an 
external GPS unit or scanned for Wi-
Fi access points using an iPAQ or cell 
phone to obtain location. In some cases, 
knowing just the location is enough to 
infer coarse-level activities. Integrat-
ing location sensing into the platform 
would enable us to support a wider 
range of context-aware applications.

Hardware platform v2.0:  
Local storage, better 
processor and battery life
We developed the second-generation 
MSP to address the major shortcomings 
identified from the version 1.0 deploy-
ments to prepare for its use in several in 
situ user studies.

As in version 1.0, version 2.0 has a 
sensor board equipped with six of the 

previously outlined seven sensors (see 
figure 1). We moved the compass to a 
separate daughterboard, which we de-
signed to support experiments in loca-
tion and inertial sensing. Version 2.0’s 
optional daughterboard provides 3D 
magnetometers, 3D gyros, a 3D com-
pass, and a USB host. This option in-
creased the MSP’s power usage (20 per-
cent) as well as its size.

To support future MSP extensions 
with new sensors, version 2.0 included 
additional serial connections and gen-
eral-purpose I/O pins. The sensor board 
includes a removable miniSD card, which 
bounds the storage size—we currently use 
2-Gbyte cards. The board also includes 
a Bluetooth radio that can communicate 
in both the Rfcomm and personal-area-
network (PAN) profiles. This capability 
lets MSP both connect to IP networks  

via Bluetooth access points and pair with 
devices such as cell phones and PDAs.

We attached the sensor board to the 
iMote2 (the second generation of In-
tel’s iMote). The iMote2’s onboard 416 
MHz Xscale processor enables feature-
processing and activity-recognition al-
gorithms to run in real time on the de-
vice. The second-generation MSP runs 
on an 1800-mAh-hour battery and is 
small enough to wear on a belt clip. It 
weighs only 4.06 oz (115 g) and mea-
sures 2 inches on its longest dimension. 
Depending on the computing and com-
munication workload, the version 2.0 
MSP runs between 10 and 20 hours on 
a single charge.

data processing and inference
Activity recognition requires sensor data 

The	system	needed	to	record	enough	

information	to	infer	a	conversation,	but	not	

enough	to	reconstruct	the	words	spoken.
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to be processed and classified into mean-
ingful activity chunks. This involves ex-
tracting various features that serve as in-
put to the classification module. Given a 
set of observed features, the system must 
learn the parameters of its algorithms 
from examples of the relevant activities. 
This training process is usually done of-
fline. If the system must recognize many 
activity types, manually training the sys-
tem would require too much human ef-
fort and activity-specific tuning. Thus, 
both the feature selection and the train-
ing process must be automated. We hy-
pothesized that automating feature se-
lection would let us develop an activity 
recognition system requiring less human 
effort during training, without sacrific-
ing recognition accuracy.

A feature’s usefulness depends on 
the specific activity to be inferred. For 
example, frequency information from 
the three-axis accelerometer is impor-
tant in determining activities such as 
walking, running, and related gaits. 
Periodicity from the microphone’s 
auditory signal is useful in determin-
ing whether someone is talking. Some 
features might be deterministic trans-
formations of the raw sensor data (for 
example, frequency content), while 
others can be probability measures (for 
example, the user’s likelihood of being 
in a certain location). 

The timescale at which features are 

computed also impacts recognition. For 
example, human speech is usually ana-
lyzed at millisecond resolution, whereas 
a variety of physical activity models 
use features computed at 0.1 to 10 Hz. 
Furthermore, contextual information 
about behavior is often computed over 
minutes or even hours (consider cook-
ing or attending meetings). 

Certain feature sets will help in rec-
ognizing certain activities or classes of 
activities, but a feature megaset could be 
useful in detecting a wide range of ac-
tivities. A classifier or model could then 
automatically select the feature subset 
that’s most suited for a given task. 

Like the MSP hardware, the MSP 
data processing and inference soft-
ware has evolved from deployment 
experience.

inference v1.0: Automatic feature 
selection and classification
The pervasive computing community 
hasn’t deeply explored the problem of 
automatically identifying a small set of 
features useful for recognizing a given set 
of activities. Although you can learn ac-
tivity models from a large set of features 
without automatic feature selection, it 
requires a huge amount of training data 
to estimate the model parameters as-
sociated with the features. If you train 
classifiers using a small quantity of data, 
the model parameter estimates won’t be 

reliable and the resulting system will be 
brittle. On the other hand, gathering 
adequate training data to represent the 
activities being modeled is often a chal-
lenge because it requires considerable 
human effort. So, the capability to au-
tomatically select a small subset of use-
ful features is highly desirable.

We’ve implemented a feature selec-
tion approach based on boosting.5,12 
In our approach, the boosting tech-
nique automatically selects a small set 
of useful features from a possible su-
perset of 600, which includes linear 
and log-scale frequency coefficients, 
cepstral coefficients, spectral entropy, 
band-pass filter coefficients, correla-
tions, integrals, means, and variances.5 
Features are selected iteratively to re-
duce the classification error rate and 
train classifiers that can recognize the 
different activities. The trained system 
outputs the probability scores for dif-
ferent activities that might be occurring 
at a given time; then it selects the most 
probable activity (see figure 2). 

In some cases, however, you might 
know the most useful feature subset in 
advance. If so, you can use it directly in 
training the classifier—for example, to 
detect the presence of a human voice.10 
In these situations, you can omit the 
feature selection step.

Deployments. We evaluated our sys-

Sensing

Logging

Classification
[p(activity1 I features) ... p(activityM I features)]

Classified activity = max p(activityi I features)]

Feature extraction

F = [f1, f2, ... fN,]

+ activity recognition

+ feature processing

Activities modeled during various deployments: walking, running taking stairs up/down, taking elevator up/down, cooking,
working on computer, eating, watching TV, talking, cycling, using an elliptical trainer, and using a stair machine.

Figure 2. MSP software flow diagram for the classification system. The MSP has a flexible usage model that includes logging, 
feature processing, and activity recognition.
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tem’s performance on the activity data 
sets we collected. Table 1 shows the 
v1.0 sample results in the first data col-
umn; detailed performance numbers 
are available elsewhere.5 By automati-
cally inferring the features that were 
most useful, we discovered that two 
modalities in particular (out of seven) 
yielded the most discriminative infor-
mation for our activities—namely, the 
accelerometer and microphone. These 
two modalities provide complementary 
information about the environment 
and the wearer. The audio captures 
sounds produced during various activi-
ties, whereas the accelerometer data is 
sensitive to body movement.

Other sensors yielded specific types 
of information useful for certain ac-
tivities. For example, the barometric 
pressure sensor was sensitive enough 
to detect the activities of riding in an 
elevator or going up and down stairs.5 
Once we had trained the system using 
data from a few individuals (usually 
six to eight), it generalized well to new 
individuals—that is, recognition rates 
for new individuals were comparable to 
those for individuals whose data was 
part of the training set. 

During training, we picked data 
collectors who represented the age, 
weight, and gender of the system user 
population.

Lessons learned. Automatic feature se-
lection helps in recognizing activities 
from a small feature subset. However, 
making a decision about activity using 
features from a single time point fails 
to take advantage of the temporal con-
tinuity or structure present in activities 

and can result in choppy classification. 
For example, a single contiguous walk-
ing segment might get broken into mul-
tiple segments. Choppy classification is 
a problem for applications that must 
take action based on the occurrence of 
a given activity.

Information about the user’s context 
can also improve inference. For exam-
ple, people seldom drive a car indoors 
or vacuum outdoors. 

Classifiers can take advantage of 
these temporal/structure and activity/ 
context dependencies, often called 
structured prediction, to improve their 
performance.

inference v2.0: Activity structures
To take advantage of activity struc-
tures, we developed an extension to the 
boosting algorithm. The extension per-
forms feature selection and structured 
prediction in a unified, more efficient 
way; details of the technique are avail-
able elsewhere.8 In experimental re-
sults, the extension improved the MSP’s 
classification smoothness and accuracy 
by approximately 10 percent (see table 
1). In fact, the unified approach outper-
forms both standard boosting methods 
and standard temporal or structured-
prediction techniques, such as hidden 
Markov models and conditional ran-
dom fields.8

The inference techniques we’ve ap-
plied so far rely on learning from explic-
itly labeled examples. This approach, 
called supervised training, requires 
each data point to be associated with 
an activity label—almost always pro-
vided by humans. While collecting 
large amounts of sensor data might not 

be difficult, accurately labeling large 
amounts of data is often impractical. 
Data labeling also has privacy implica-
tions, as it can require human observers 
to review sensitive data, such as video 
and audio recordings.

Unsupervised training methods that 
group feature traces in relevant activ-
ity clusters automatically, without us-
ing labels, have shown some promise in 
limited settings.13 However, fully unsu-
pervised techniques don’t know what 
activities to model, so they run the risk 
of grouping data into clusters that don’t 
correspond to the activity patterns the 
application needs. 

inference v3.0: Reductions   
in labeled training data
If we can train activity recognition sys-
tems using a few labeled examples and 
all the available unlabeled data (often 
referred to as semisupervised training), 
system performance is likely to improve 
compared to using supervised methods 
on a limited amount of labeled data. 
Semisupervised techniques are also 
useful for personalizing activity mod-
els to a specific user’s behavior, as the 
system can adapt the model parameters 
according to the user’s unlabeled data, 
even after system deployment.

To reduce the dependency on labeled 
data, we developed a semisupervised 
version of our previous algorithm. The 
new algorithm can select features, use 
activity structures, and take advantage 
of available unlabeled data9 (see table 
1 for experimental results). The new 
algorithm is also computationally very 
efficient, requiring significantly less 
training time and memory compared 

TABLE 1 
Inference algorithms’ performance for activities classified every 0.25 seconds.*

Inference v1.0  
(temporal information 

not included, supervised)

Inference v2.0  
(temporal information 
included, supervised)

Inference v3.0†  
(temporal information included, 

semisupervised)

Training	data	labeled 100% 100% 5% 20% 40%

Accuracy‡ 83.6% 93.8% 79.7% 83.1% 87.4%
*Activities: walking, sitting, standing, taking stairs up and stairs down, taking elevator up and down, brushing teeth.
†For the semisupervised approach (v3.0), the columns report performance when different fractions of the training data (5, 20, and 40 percent) are labeled.
‡Detailed performance numbers, including precision and recall, on the complete set of activities are available elsewhere.5,8,9
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to related semisupervised methods. 
In our experiments, the training time 
decreased by a factor of 20 and the 
memory requirement by a factor of 13 
(details are available elsewhere9). We 
believe these efficiencies will appeal to 
application developers.

implementation status
Table 2 summarizes the current MSP 
implementations. The embedded soft-
ware runs inference version 1.0 with 
partial support for temporal models. 
We plan to port inference versions 2.0 
and 3.0 into the platform in the near 
future. Although these inference mod-
els will require more computational 
resources, the requirements are within 
the MSP’s capabilities. 

The computational cost of train-
ing the models developed as part of 
inference versions 2.0 and 3.0 is sig-
nificantly higher. However, training is 
often done offline, and the embedded 
software runs the inference using the 
trained model parameters. The MSP 
software processes the sensor streams, 
computes the features, and applies the 
trained models to classify activities.

The MSP runs standard Linux with 
complete support for multitasking, IP 
networking via Bluetooth or USB, and 
a flash file system. We’ve developed a 
flexible feature extraction and classifi-
cation runtime library that uses a sim-

ple XML configuration file for speci-
fying a sensor set, sampling rates, and 
algorithms. The MSP can stream the 
resulting computations to storage over 
the network or to a custom program 
running on the MSP. 

To improve MSP program develop-
ment, we’ve configured a Linux VM-
ware image with the MSP cross-devel-
opment environment.

Real-world deployments  
and applications
We’ve used MSP version 2.0 hardware 
in a variety of pilot deployments and 
experiments. These deployments have 
reinforced some of the lessons learned 
during the design iterations and vali-
dated the MSP’s overall flexibility in 
supporting different usage models. A 
brief sampling of the research deploy-
ments show different ways the platform 
could be used.

ubiFit garden field study
UbiFit Garden is an application that 
uses on-body sensing, real-time activ-
ity inference, and a mobile ambient 
display to encourage individuals to be 
physically active. UbiFit Garden uses 
the MSP to infer five types of activi-
ties: walking, running, cycling, using 
an elliptical trainer, and using a stair 
machine. The MSP communicates the 
inferred activity labels via Bluetooth to 

a mobile phone that applies heuristics 
to smooth the inferences into contigu-
ous activity chunks, such as a 47-min-
ute walk. When the individual starts an 
activity, a flower blooms in a garden on 
the background screen of his or her mo-
bile phone.14 Once we’ve incorporated 
inference version 2.0 into the embed-
ded software, this smoothing can hap-
pen automatically on the MSP, thus re-
ducing Bluetooth communications and 
increasing battery life. 

Our first in situ study of the UbiFit 
Garden system was a three-week field 
trial (N = 12) conducted during the 
summer of 2007. All participants were 
volunteers who regularly used mobile 
phones and wanted to increase their 
physical activity level. Participants un-
derstood that the study involved wear-
ing a fitness device. They represented a 
variety of mostly nontechnical occupa-
tions including homemakers, a market-
ing specialist, receptionist, elementary 
school employee, musician, copywriter, 
filmmaker/videographer, professional 
actor/dancer, director of external af-
fairs for a nonprofit agency, and soft-
ware implementer.

Participants received a user manual 
explaining how to use the MSP, phone, 
and UbiFit Garden application. The 
research team spent about 30 minutes 
at the beginning of the study going 
over the manual; they interacted with 

TABLE 2 
Current Mobile Sensing Platform implementations.

Component MSP hardware v1.0 MSP hardware v2.0

Processor ATMega128	microcontroller	on	sensor	board
ARM7	processor	on	iMote

ATMega128	microcontroller	on	sensor	board
PXA271	Xscale	processor	on	iMote

Storage No	onboard	storage miniSD	card	slot	(current	storage	2	Gbytes)*

Communication Bluetooth	radio	Rfcomm Bluetooth	radio	(both	Rfcomm	and	PAN),	plus		
Zigbee	radio

Battery	life 200	mAH	Li-Polymer	battery:
•	Basic	data	handling:	37	mA
•	Stream	data:	50	mA

1800	mAH	Li-Polymer	battery:
•	Basic	data	handling:	103	mA
•	Log	data:	127	mA	
•	Stream	features:	118	mA
•	Stream	inference	results:	113	mA

Inference No	onboard	inference	capability Embedded	inference	software	version	1.0
*Records over 10 days of audio features plus other sensor traces sampled at the highest rate used in any of our experiments.
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participants only during scheduled 
interview sessions (at the beginning, 
after the first week, and at the end of 
the three weeks) or if participants re-
ported a technical problem with the 
device (two reports total). 

During the study, the MSP inferred 
a total of 207 instances of physical ac-
tivity events for the 12 participants. 
Participants left most (77 percent) of 
the MSP-inferred events unedited in 
UbiFit’s fitness log, which ran on the 
mobile phone. Response to UbiFit 
Garden was overwhelmingly positive. 
At the study’s end, most participants 
said they would prefer a system that 
included activity inference, such as 
the MSP, over one that relied solely on 
manual entry (study details are avail-
able elsewhere14).

Recall accuracy study
The ability to accurately recall daily 
activities is central to many disci-
plines. In health sciences, establishing 
health benefits from physical activity 
is primarily done on the basis of self-
report data, typically surveys asking 
people to recall what physical activ-
ity they performed in the last week or 
two.15 However, data suggests that, es-
pecially for frequent activities, people 
tend to overreport physical activity 
and underreport sedentary behaviors. 
We wished to systematically investi-
gate how we might minimize partic-
ipant burden of self reporting, while 
maximizing the accuracy of the infor-
mation reported. 

In early 2007, we conducted a study 
to understand how well people recall 
the amount of their active behaviors, 
such as walking, and their sedentary 
behaviors, such as sitting. Twenty par-
ticipants volunteered to wear an MSP 
and carry an associated cell phone for 
eight typical workdays (approximately 
12 hours per day). Participants repre-
sented a variety of professional profiles 

including office workers, retail work-
ers, homemakers, students, a dancer, a 
tight rope instructor, and a waiter. The 
office workers were researchers, engi-
neers, a public health professional, and 
an environmental scientist. 

The cell phone randomly surveyed 
participants throughout the day at 
varying frequencies—ranging from 
once a day to every 20 minutes—to 
ask about their walking and sitting 
patterns. To score participants’ re-
sponses, we used the MSP to estimate 
how much walking and sitting they did 
during the period in question. We used 
the MSP’s activity recognition data 
as “ground truth,” so we trained the 
classifiers specifically to maximize the 
recognition accuracy for walking and 
sitting, which we benchmarked inde-
pendently at 96 percent and 93 percent, 
respectively. 

other ongoing studies
Several other studies using the MSP 
are currently under way. One project 
involves developing algorithms to com-
pute accurate caloric expenditure from 
user activities, which we will use to 
build an ambient personal-fuel gauge.

Another project is targeting Type I 
diabetics to adjust insulin dosages on 
the basis of real-time activity informa-
tion and thus prevent dangerous hypo-
glycemic episodes.

A third project couples MSP with 
GPS information to better understand 
how urban planning affects public 
health by measuring outdoor physical 
activity levels in different types of built 
environments.

O ur studies identified three 
critical capabilities for 
mobile inference systems 
to support a variety of us-

age scenarios and applications: 

Form factor. The sensing device must 
be small and unobtrusive yet capa-
ble of recognizing a broad range of 
activities. (Our current prototype is 
still too large for commercial use, 
but study participants understood 
that the device would eventually be 
smaller.) A single multimodal device, 
as opposed to multiple separate sen-
sor nodes, is likely to gain greater 
user acceptance. 
Sensing hardware. The system needs 
enough storage for data logging, suf-
ficient computational resources for 
data processing and running simple 
inference algorithms, wireless con-
nectivity to drive interactive appli-
cations, and enough battery power 
to run for at least an entire day. Sys-
tems that store data on a device used 
for other purposes, such as a mobile 
phone, must accommodate those 
other storage needs as well (for exam-
ple, leaving room for saving photos). 

Recognition software. In addition to 
being computationally efficient, the 
recognition algorithms should mini-
mize the amount of human effort re-
quired during training and data la-
beling. It should be easy to extend the 
algorithms to recognize a wide range 
of activities and to personalize to a 
given user’s data. 

In developing the MSP, we ad-

•

•

•

Most	UbiFit	Garden	participants	said		

they	would	prefer	an	activity-inference	system	

over	one	that	relied	solely	on	manual	entry.
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dressed key challenges in building a 
scalable, mobile, activity-inference 
system. We will continue to address 
some of these remaining challenges in 
our ongoing research. For example, 
these systems must be able to recog-
nize multiple parallel activities simul-
taneously and deal with interleaving 
activities, such as a situation where a 
user starts to cook, is interrupted by a 
phone call, and then returns to cook-
ing. They must automatically learn 
new activities, intelligently prompt the 
user for new activity labels (by maxi-
mizing the information gained from a 
minimal number of prompts), and use 
these labels to build models for new 
activity types or to improve the exist-
ing models.
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