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Continuously monitoring schizophrenia patients’ psychiatric symptoms is crucial for in-time intervention and treatment

adjustment. The Brief Psychiatric Rating Scale (BPRS) is a survey administered by clinicians to evaluate symptom severity in

schizophrenia. The CrossCheck symptom prediction system is capable of tracking schizophrenia symptoms based on BPRS using

passive sensing from mobile phones. We present results from an ongoing randomized control trial, where passive sensing data,

self-reports, and clinician administered 7-item BPRS surveys are collected from 36 outpatients with schizophrenia recently

discharged from hospital over a period ranging from 2-12 months. We show that our system can predict a symptom scale

score based on a 7-item BPRS within ±1.45 error on average using automatically tracked behavioral features from phones

(e.g., mobility, conversation, activity, smartphone usage, the ambient acoustic environment) and user supplied self-reports.

Importantly, we show our system is also capable of predicting an individual BPRS score within ±1.59 error purely based

on passive sensing from phones without any self-reported information from outpatients. Finally, we discuss how well our

predictive system reflects symptoms experienced by patients by reviewing a number of case studies.
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1 INTRODUCTION

Schizophrenia is a severe chronic psychiatric disorder associated with high individual and societal costs. Psychosis 
is not considered as a fixed state. Rather, the majority of people with schizophrenia fluctuate between full or 
partial remission and episodes of symptomatic relapse [61]. Psychotic symptoms may change over months, 
weeks, or even days, and can be affected by both external conditions and internal states [5]. In the case of relapse, 
patients may find themselves suffering severe hardship if not helped, such as, homelessness, incarceration, and 
victimization [16, 29, 31, 38]. Patients are often hospitalized as consequence of schizophrenia relapse.

Clinicians need to track schizophrenia patients’ symptom states to identify risks and adjust treatment as neces-
sary. At the CrossCheck study [63] partner hospital, Zucker Hillside Hospital, in New York City, schizophrenia 
outpatients regularly schedule clinical visits with their clinicians. The time between visits varies from once a week 
to once a month, depending on the patients’ symptom severity and risk. Clinicians use a battery of mental health 
tests to evaluate the patients’ symptom states and adjust their treatment accordingly. In our study, clinicians 
administer a 7-item Brief Psychiatric Rating Scale (BPRS), a subset of the original 24-item BPRS [18, 28, 37, 62] 
as a part of their clinical model. The BPRS is a rating scale to measure psychiatric symptoms associated with 
schizophrenia, such as, depression, anxiety, hallucinations, and unusual behavior. Each symptom is rated 1-7 (1 is 
given if the symptom is not present to 7 extremely severe). The reliability, validity and sensitivity of the BPRS 
measurement has been widely examined and considered a gold standard in assessment [30]. The 7 items include 
grandiosity, suspiciousness, hallucinations, unusual thought content, conceptual disorganization, blunted affect, 
and mannerisms and posturing. The clinical research team at Zucker Hillside Hospital determines these 7 items 
represent the strongest predictors of deterioration in symptoms amongst all BPRS items. The total score of the 7 
BPRS items measures the overall symptom severity. However, this assessment has its shortcomings. Clinicians 
are not aware if a patient experiences deteriorated symptoms between visits. Because of this gap of knowledge in 
outpatients management between visits, clinicians are more likely to miss the optimal time to intervene to treat 
patients who are increasingly symptomatic and experiencing increased risk of relapse. Finally, the burden of 
hospital visits and face to face assessments on patients and health service providers further prohibits patients 
from more frequent visits with their clinicians to adjust treatment or provide intervention.
In order to address these shortcomings, we develop the CrossCheck symptom prediction system to monitor 

patients’ trajectory of psychiatric symptoms. The system predicts patients’ weekly 7-item BPRS total scores using 
passive sensing and self-reported ecological momentary assessment (EMA) responses from smartphones. Other 
than self-reported EMAs, the 7-item BPRS is administered by a trained clinician at our study partner hospital.
The scored 7-item BPRS survey serves as a clinical indicator of treatment for patients who have moderate to 
severe disease. The clinician is responsible for interpreting the constructs in the assessment which are technical.
The CrossCheck symptom prediction system predict the total score of the 7-item BPRS every week. Weekly 
predictions track participants’ overall psychiatric symptoms and level of risk for relapse.
In our previous research [63] from the CrossCheck project, we reported on associations between passive 

sensing data and self-reported EMA responses, and models that can predict the self-reported EMA scores using 
sensor data from phones. These weekly EMA questions developed specifically for the CrossCheck study attempt 
to measure several dynamic dimensions of mental health and functioning in people with schizophrenia. In this 
paper, we turn to predict the 7-item BPRS, which is administered by a trained clinician. We present 7-item 
BPRS prediction results from an ongoing randomized control trial (RCT), where passive sensor data, self-reports 
and clinically administered 7-item BPRS reports are collected from 36 outpatients with schizophrenia recently 
discharged from hospital over a period ranging from 2-12 months. We show that our system can predict 7-item 
BPRS using a combination of passive sensing data and self-reported EMA. Importantly, we also show that we can 
predict 7-item BPRS scores purely based on passive sensing data from mobile phones. This paper makes the following 
contributions:
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• To the best of our knowledge, the CrossCheck symptom prediction system is the first system capable of

tracking schizophrenia patients’ symptom scores measured by the 7-item BPRS using passive sensing and

self-report EMA from phones. The system enables clinicians to track changes in psychiatric symptoms of

patients without evaluating the patient in person.

• We identify a number of passive sensing predictors of the 7-item BPRS scores. These predictors describe

a wide range of behaviors and contextual environmental characteristics associated with patients. Specifi-

cally, we find features extracted from physical activity, conversation, mobility, phone usage, call logs, and

ambient sound are predictive of the 7-item BPRS.

• We use leave-one-record-out and leave-one-subject-out cross validations [35] to evaluate the 7-item BPRS

prediction performance for prediction using passive sensing and EMA data. With leave-one-record-out

cross validation, the system predicts the 7-item BPRS scores within ±1.45 of error on average. With

leave-one-subject-out cross validation, the system predicts the 7-item BPRS scores within ±1.70 of error
on average.

• We predict the 7-item BPRS scores within ±1.59 of error solely based on passive sensing without self-

reports. Self-report suffers from a number of problems, adherence being one. In addition, because of

increasing symptoms severity patients may be incapable of providing accurate self-reports (e.g., due

to cognitive impairments). A system based purely on passive sensing data alleviates this problem and

resolves the adherence problem. Furthermore, it opens the way for continuous assessment of symptoms

and risk as people go about their everyday lives.

• We discuss anecdotal information associated with three patients in the study. These case studies show

that our system can identify patients with rising risk.

The structure of the paper is as follows. We present related work on mental health sensing in Section 2,

followed by a detailed description of the CrossCheck symptom prediction system in Section 3. We detail the

CrossCheck study design and dataset in Section 4. Following that, we discuss the performance results of our the

symptom prediction system in Section 5. In Section 6, we discuss three case studies and show how the CrossCheck

symptom prediction system reflects real-life conditions of patients. Finally, we present some concluding remarks

in Section 7.

2 RELATED WORK

There is an increasing amount of research in mental health sensing using phones [2, 41, 64]. In [53] the authors

demonstrate that speech and conversation occurrences extracted from audio data and physical activity infer

mental and social well-being. The StudentLife study [64] investigates the relationship between passive sensing

behaviors including conversation, sleep, activity and co-location with mental health outcomes, such as, depression,

stress, loneliness, and flourishing for 48 college students over a 10-week term. The authors find for the first time

significant correlations between passive sensing data from phones and the PHQ9 depression scale [39, 40, 59].

Researchers at Northwestern University [56] find that mobility and phone usage features extracted from phone

data correlates with depressive symptom severity measured by PHQ9[39, 40, 59] for 40 participants recruited

from the general community over a 2 week period. Their results show features from GPS data, including circadian

movement, normalized entropy, location variance, and phone usage features, including usage duration and usage

frequency, are related to depressive symptom severity. The research team reproduce the findings from their initial

study [55] using the StudentLife dataset [64]. This replication of study findings using a different dataset indicates

that the mobility features discussed in [56] could be translational and potentially broadly applicable in depression

sensing of different communities (i.e, students on a remote college campus, people recruited in a metropolitan

area). Canzian et al [11] develop an expanded set of mobility features over [55] and find that location data

correlates with PHQ9 [39, 40, 59]. The authors show that the maximum distance traveled between two places

strongly correlates with the PHQ score. Mobility features are used to track the trajectory of depression over
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time. Recently, the same team [48] reports on the association between human-smartphone interaction features 
extracted from a two-week study and depression. A group from the University of Connecticut [21] also finds 
that behavioral data from phones (e.g., home stay duration, normalized entropy) can predict clinical depression 
diagnoses with the precision of 84%. In [15] the authors combine wearable and smartphone data and discuss the 
temporal relationship between self-reported affect and physiological variables linked to depressive symptoms.

The MONARCA project [27, 49, 50, 54] first report on finding from smartphone sensing and bipolar disorder.
The authors [50] discuss correlations between the activity levels over different periods of the day and psychiatric 
evaluation scores associated with the mania-depression spectrum. The findings reported in [1] show the automatic 
inference of circadian stability as a measure to support effective bipolar management. Maxuni et al. [47] extend 
these insights by using speech and activity levels to successfully classify stratified levels of bipolar disorder.
There is a growing body of work on stress inference using mobile devices. For stress detection from speech,

[44] infers stress with > 0.76 accuracy using acoustic features. Other studies investigate the use of location 
information [3], measures of social interaction derived from phone calls, SMS, and proximity data [8] to detect 
stress. In [32, 57, 58], the authors demonstrate using features from both smartphones and wearables to detect 
and track stress. A number of papers [23, 26, 36, 45] explore using physiological sensing from wearable devices 
to predict stress; for example, features extracted from galvanic skin response and heart rate variability are found 
to be good predictors of stress.
There is also a growing amount of research studying early warning signs and rising risk for people with 

schizophrenia. It is widely accepted that traditional clinical evaluation approaches, such as face to face interviews 
or periodic self-reported surveys, cannot offer continuous monitoring to detect early warnings of symptom 
exacerbation [7, 19, 60]. Early work in mobile mental health for schizophrenia conducted by Ben-Zeev et al. [6] 
first study the feasibility and acceptability of using mobile devices for behavioral sensing among individuals with 
schizophrenia. In [6] the authors find that participants feel comfortable using the mobile phones, accepting of 
passive sensing, with participants interested in receiving feedback and suggestions regarding their health. Our 
previous work on CrossCheck [63] finds associations between passive sensed behaviors and self-reported mental 
health status. Kerz et al. [34] tests feasibility and acceptability of SleepSight, a system collecting longitudinal 
accelerometry, heart-rate, ambient light and phone usage patterns for 15 participants diagnosed with schizophrenia 
living at home. To the best of our knowledge there has been no work that attempts to use sensing data passively 
collected from mobile phones to predict BPRS scores.

3 CROSSCHECK SYMPTOM PREDICTION SYSTEM
The CrossCheck symptom prediction system comprises the CrossCheck app running on Android phones [63] and 
the CrossCheck data analytics service running in the cloud. The CrossCheck app collects participants’ passive 
sensing data and self-reported EMA data [63] and uploads it daily to the data analytics service. The CrossCheck 
data analytics service processes the participants’ data and predicts participants’ 7-item BPRS scores on a weekly 
basis. These weekly reports allow the research and clinical teams to reach out to patients if the system predicts 
rising risk. Figure 1 summarises the systems components, workflow, and outreach.

3.1 CrossCheck App and Sensing System
The CrossCheck app [63] is built based on our prior sensing work [1, 42, 64]. The app continuously infers and 
record participants’ physical activities (e.g., stationary, in a vehicle, walking, running, cycling), sleep (duration, 
bed time, and rise time), and sociability (i.e., the number of independent conservations a participant is around 
and their duration). The app also collects audio amplitude, accelerometer readings, light sensor readings, location 
coordinates, application usages, and call logs. The app uses a built-in MobileEMA component [64] to administer 
self-reported EMAs [6]. To protect participants’ privacy, the app does not collect phone numbers, content of text 
messages or any conversation content [64]. We remotely erase the CrossCheck data on the phone and reset it if
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hopeful
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Passive Sensing
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charged and connected 
to the Internet

3
Report
data visualization
daily study adherence

4 Clinician Rated 7-item BPRS Scores
ground truth for training the BPRS prediction model

5
Weekly BPRS predictions

based on the participants’ behavioral 
data and self-report symptom data 
over the last 30 days

6
Reach Out

Once a patient is identi ed as at risk of experiencing increased symptoms 
based on their predicted 7-item BPRS score, the research staff reach out 
to them via phone

Fig. 1. System overview of the CrossCheck symptom prediction system

the phone is lost. The app uploads the data to the secured CrossCheck data analytics service in the cloud when

the participant is charging their phones and under WiFi or cellular data services. The study provides participants

with a Samsung Galaxy S5 Android phone and unlimited data plan for the duration of the study. The CrossCheck

EMA questions are listed in Table 2. See [63] for more detailed discussion of the implementation and evaluation

of the phone application and system.

3.2 CrossCheck Data Analytics System

The CrossCheck data analytics system receive and process the data from the app. It generates reports and

visualizations for research staff to monitor study adherence and changes in participants’ behaviors. The research

team periodically receive clinician rated BPRS scores (i.e., ranging from weekly to monthly depending on patients’

condition severity) and the system predicts every participant’s 7-item BPRS score every week.

Smartphone data processing. The analytics system receives the passive sensing and EMA data from the

CrossCheck app and stores the data to a distributed mongoDB database. The analytics system automatically

generates behavioral features from raw passive sensing and EMA data. The behavioral features are the basis for

visualizing behavior changes, monitoring study adherence, and predicting BPRS scores.

Clinician rated BPRS scores. Research staff input participants’ clinician rated 7-item BPRS scores to the system.

The clinician rated 7-item BPRS scores are used as the ground truth for training the 7-item BPRS prediction

model.

Passive Sensing and EMAData visualization. The system generates plots to show how participants’ behaviors

and self-report symptoms change over time. For example, Figure2 shows the distance traveled by a participant, and
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self-reported visual hallucinations (i.e., the seeing things EMA item) symptom over 30 days. These visualizations

help research staff evaluate participants’ symptoms in addition to 7-item BPRS predictions.
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Fig. 2. Example data visualization used for assessment showing the changes in distance traveled and self-reported visual 
hallucinations symptom over a 30 day period. Our research staff uses these plots to better understand behavioral trends 
associated with 7-item BPRS predictions.

Weekly 7-item BPRS predictions. The system predicts every participant’s 7-item BPRS scores at the beginning 
of each week and emails prediction reports to research staff to review. The weekly interval gives research staff 
enough time to respond (i.e., reach out to patients and their clinical team) if needed. The prediction is based on the 
participants’ passive sensing data and their self-reported symptom data over the last 30 days. The reports contain 
the predicted 7-item BPRS score for the last three weeks and the changes in the predicted 7-item BPRS scores. 
Research staff use the 7-item BPRS prediction reports to identify participants at increased risk. The criteria to 
identify a participant at risk is discussed in Section 4. Once a participant is considered at rising risk, the research 
staff reach out to the patient to check if they are indeed experiencing increased symptoms. The research staff 
reach out to clinicians to notify them of any potential risk allowing clinicians to take actions to help patients 
(e.g., arrange for a caregiver to contact them, schedule an immediate clinical visit). The 7-item BPRS prediction 
model is described in detail in Section 5.

Daily study adherence reports. To monitor patients’ study adherence and detect if any participants are 
experiencing technical issues that prevent the app from uploading the passive sensing data, the system sends a 
daily report on how many hours of different sensor data are collected for the last few days. These daily reports 
label participants who have not uploaded any data. Researchers rely on these daily reports to identify participants 
who are having problems with the system so they would call non-compliant participants to give assistance and 
get them back on track – we deem this a technical outreach and not a clinical outreach associated with BPRS 
prediction. Examples of non-adherence because of technical problems include not using the phone because of 
problems with the device, no data coverage, can’t recharge, or lost or stolen.

 on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 110. Publication date: 
September 2017.



Predicting Symptom Trajectories of Schizophrenia using Mobile Sensing • 110:7

4 CROSSCHECK STUDY AND THE DATASET

TheCrossCheck symptom prediction system is deployed in an on-going randomized controlled trial [12] conducted

in collaboration with a large psychiatric hospital, Zucker Hillside Hospital, in New York City [63]. In what

follows, we discuss the study design and dataset.

4.1 CrossCheck Study

The study aims to recruit 150 participants for 12 months using rolling enrollment. The participants are randomized

into one of two study arms: smartphone (n=75) or treatment-as-usual (n=75) [63]. This study is approved by the

Committee for Protection of Human Subjects at Dartmouth College and Institutional Review Board at Northwell

Health System. The CrossCheck symptom prediction system development and deployment is supported by NIH’s

EUREKA (Exceptional Unconventional Research Enabling Knowledge Acceleration) program, grant number

R01MH103148.

Recruiting participants. We use the study hospital’s electronic medical record to identify potential study

candidates. A candidate is a patient who is 18 or older, met DSM-IV or DSM-V criteria for schizophrenia, schizoaf-

fective disorder, psychosis not otherwise specified, and had psychiatric hospitalization, daytime psychiatric

hospitalization, outpatient crisis management, or short-term psychiatric hospital emergency room visits within 12

months before study entry. The candidate should be able to use smartphones and have at least 6th grade reading

determined by the Wide Range Achievement Test 4 [65]. Individuals with a legal guardian are excluded. Staff

members contact potential study candidates who meet the study criteria to gauge their interest in the study and if

interested individuals sign the consent form to join the study. In order to make sure the participants understand

the consent form to provide informed consent, the study candidates need to pass a competency screener. After

consent is given, enrolled participants are administered a baseline assessment, then are randomly assigned to

either the smartphone arm or treatment-as-usual arm. Note, patients assigned to the treatment-as-usual arm do

not get a phone and therefore no remote sensing is done. Participants in the smartphone arm are given a Samsung

Galaxy S5 Android phone equipped with the CrossCheck app and receive a tutorial on how to use the phone.

To ensure the acquired sensing data has broad coverage of behaviors, participants personal phone numbers

are migrated over to the new phone and they are provided with an unlimited data plan for data uploading. In

this manner, we attempt to increase the likelihood that they will use the study phone as their primary phone.

Participants are asked to keep the phone turned on and to carry it with them as they go about their day and

charge it close to where they sleep at night.

Monthly 7-item BPRS evaluations. Participants schedule monthly visits with their clinicians. During their

visits, clinicians administer the 7-item BPRS. The 7-item BPRS score ranges from 7 to 49. Higher scores are

associated with more severe symptoms. The construct of the 7-item BPRS is discussed in Section 4.2.1. Our study

staff input the clinician rated 7-item BPRS scores to the CrossCheck data analytics system.

Weekly 7-item BPRS predictions and rising risk criteria. The prediction system sends out a 7-item BPRS

prediction report every week to research staff by email. The prediction report shows the participant’s predicted

7-item BPRS scores for the last 3 weeks. Our research staff use the predicted 7-item BPRS scores over the

preceding 2-week period to identify any patients who may be potentially at risk. A patient at risk is one whose

predicted 7-item BPRS score is above 12 or experiences an increase of 10% or more since their last predicted

7-item BPRS score. The research and clinical teams determined the rising risk threshold criteria (i.e., the score

cut off and percent change) by studying the historical BPRS scores from patients who experienced relapse; that

is, we analyzed scores in time periods prior to relapse to determine the cut-off and, in addition, because some

patients’ data prior to relapse showed a lower cut off but large increasing percent changes we also determined

the additional criteria of the 10% change or greater between two predictions as a red flag.
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4.2 CrossCheck Dataset

The dataset comprises the participants’ monthly 7-item BPRS scores rated by their clinicians, behavioral features

extracted from passive sensing, and symptom features extracted from self-report EMAs. We use 30 days of

sensing and self-report EMA data to predict a 7-item BPRS score. The 30-day time frame is called the 7-item BPRS

prediction time frame. The 30-day time frame matches the interval of clinician rated 7-item BPRS, which is 30

days on average. The passive sensing features summarize the level of behaviors (e.g., the average conversation

duration per day in the 30-day time frame) and behavior changes (e.g., increase or decrease in conversation

duration and the dynamics – for example direction and steepness – of change) in the 7-item BPRS prediction time

frame. To compute a feature for the prediction time frame, we first compute the daily feature time series from the

raw sensing data. We then compute the 30-day features from the daily feature time series. In what follows, we

discuss the construction of the dataset in detail.

4.2.1 The 7-item Brief Psychiatric Rating Scale. The BPRS [18, 28, 37, 51, 62] survey is a 24-item rating scale

that is is a validated tool administered by clinicians to evaluate symptom severity in schizophrenia. The reliability,

validity, and sensitivity of the BPRS measurement has been widely examined [30]. BPRS is rated by a trained

rater, usually a clinician. The rater scores each BPRS item based on the patient’ responses to questions, observed

behavior, and speech.

Table 1 lists all the BPRS items [51]. Each item is rated from 1-7 (1 is given if the symptom is not present to 7

extremely severe). The clinical team at our partner hospital administers 7-item BPRS, which is a subset of the

24-item BPRS. Specifically, the 7 items are grandiosity, suspiciousness, hallucinations, unusual thought content,

conceptual disorganisation, blunted affect, and mannerisms and posturing. The clinical research team at Zucker

Hillside Hospital chooses these 7 items as a part of their clinical model because they represent the strongest

predictors of deterioration in symptoms. A 7-item BPRS total score is computed by summing up the scores from

the 7 items. The total score ranges from 7 to 49, where higher score indicates deteriorating symptoms. The 7-item

BPRS total score is the outcome of our predictions.

Table 1. Brief Psychiatric Rating Scale Items

Somatic concern, anxiety, depression, suicidality, guilt, hostility

Elevated mood, grandiosity, suspiciousness, hallucinations, unusual thought content

Bizarre behavior, self-neglect, disorientation, conceptual disorganization

Blunted affect, emotional withdrawal, motor retardation, tension, uncooperativeness

Excitement, distractibility, motor hyperactivity, mannerisms and posturing

Note, only items in bold are evaluated during monthly clinic visits.

As mentioned only 7 out of 24 items (marked in bold in Table 1) are evaluated during clinic visits. The 7-item 
BPRS total score is the sum score of items in bold, which ranges from 7 to 49. The CrossCheck study clinicians 
enter a score for each of 7 term that best describes the patient’s condition at the time of the face to face visit. In 
what follows we briefly explain each item. For more detail on the BRPS form see [9] and the theory behind the 
BPRS see [30, 51]. The “grandiosity” item assesses exaggerated self-opinion, arrogance, conviction of unusual 
power or abilities. The “suspiciousness” item captures mistrust, belief others harbor malicious or discriminatory 
intent. The “hallucinations” survey item, measures the patient’s perceptions without normal external stimulus 
correspondence. The item that relates to “unusual thought content” gauges unusual, odd, strange, bizarre thought 
content that the patient has experienced or exhibits. “Conceptual disorganization” relates to how patients’ 
thought processes might be confused, disconnected, disorganized, disrupted. The item associated with “blunted 
affect” captures reduced emotional tone, reduction in formal intensity of feelings, flatness the patient exhibits
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during assessment. The final item, “mannerisms and posturing” rates any peculiar, bizarre, unnatural motor

behavior (not including tic) displayed by the patient.

Figure 3(a) shows the distribution of the 7-item BPRS total scores in the dataset. The 7-item BPRS data is from

36 participants over a period of 2-12 month period. There are a total of 116 administered BPRS reports. The

BPRS scores range from 7 to 21. The mean score is 10.0 and the standard deviation is 2.86. The score cutoff for

symptom deterioration is 12, which is determined by looking at the clinician rated 7-item BPRS scores closest in

time to symptomatic relapse for participants who previously relapsed. Figure 3(b) shows the within-individual

BPRS score variation. We list participants according to their average BPRS scores. We give greater participant

IDs to participants rated with higher average BPRS scores. Some participants record the same BPRS score (e.g.,

participant 1, 2, and 5) whereas other participants record larger ranges of BPRS scores (e.g., participant 26).
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Fig. 3. The distribution of 7-item BPRS total scores from 36 participants administered over a of 2-12 month period. In total

116 surveys were administered during this period. The 7-item BPRS scores from the participants ranges from 7 to 21. The

mean BPRS score is 10.0, and the standard deviation is 2.86. (a) shows that participants are rated with low 7-item BPRS scores

most of the time. However, some cases show higher 7-item BPRS scores, meaning the participants experienced deteriorated

symptoms during the span of the study. (b) shows the the within-individual BPRS score variation. Some participants record

the same BPRS score (e.g., participant 1, 2, and 5) whereas other participants record larger range of the BPRS scores (e.g.,

participant 26). The order of participants in (b) is based on their average BPRS score (i.e., participants with greater participant

id are rated higher BPRS score on average).

.

4.2.2 Daily Passive Sensing Features. The CrossCheck app collects a wide range of behavioral passive sensing

data from the phone. These data capture physical activity, sociability (based on speech and conversational data),

mobility, sleep, phone usage, and characteristics of the ambient environment in which participants dwell. We

extract features from the multimodal behavioral data to capture the characteristics of participants behaviors that

are predictive of 7-item BPRS scores. Features are computed on a daily basis and for specific periods of the day;

that is, in addition to daily features, we also compute features over four epoch periods [63]: morning (6 am to

12 pm), afternoon (12 pm to 6 pm), evening (6 pm to 12 am), and night (12 am to 6 am). This allows us to get

important behavioral insights during specific periods of a person’s day (e.g., conversation during the evening,

phone usage at night, etc.).

Activity. The app infers physical activities using the Android activity recognition API [24, 63]. Activity recogni-

tion infers whether a user is on foot, stationary, in vehicle, on bicycle, tilting, or doing an unknown activity. Our
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evaluation [63] of the Android activity recognition API inferences of walking, in vehicle, and stationary is 95%
accurate [63]. In addition to recording activity classes, we compute the durations of walking states, stationary 
state, and stationary plus in vehicle state. People in a vehicle are typically not physically active in terms off 
movement. In order to capture the time when the participant is not actively moving, we sum up the stationary 
duration and the in vehicle duration to estimate the true non-physically active duration. We use the activity 
recognition classes from Android and our aggregate features for analysis.

Speech and conversational interaction. The CrossCheck app infers the amount of speech and conversation a 
patient is around [63]. On a daily basis we compute the number of independent conversations and their duration 
as a proxy for social interaction. We also compute the ratio of detected human voice label observed (e.g., amongst 
all inferred audio frames during a day, for example, 10% human voice). In [63, 64] we discuss the detailed in design 
of the conversational classifier that continuously runs on the phone in an energy efficient manner (i.e., duty 
cycled). In brief, it represents a two level classifier. At the lowest level we detect speech segments and at the higher 
level we determine if the set of segments represent a unique conversation. Note, we do not record any speech 
on the phone or upload to the cloud and all audio signal processing and feature extraction is based on privacy 
preserving algorithms [66–68] destructively processed on the phone. Because we do not do speaker identification 
we do not know that the patient is actively involved in the conservations or not (e.g., they could be sitting at a 
table or next to a table in a cafe where others are speaking). We consider the CrossCheck conversational features 
as a proxy for social interaction and engagement [64]. Finally, the audio classifier is designed, implemented and 
tuned not to be confused by other audio sources, such as music, conservation on the TV or radio [64].

Location and mobility. We compute distance traveled, the number of places visited, and location entropy from 
the location data [11, 56, 64]. In order to remove the noise caused by GPS drifting, we use DBSCAN [46] to 
cluster GPS coordinates collected during the day. DBSCAN groups GPS coordinates that are close together as a 
significant place where the participant visits. Some coordinates are not grouped to any significant places. These 
coordinates are collected when the participant is mobile. We compute the number of places visited as a feature. 
We also compute the distance traveled and location entropy using the centroid coordinates of visited places and 
coordinates collected when the participant is mobile.

Sleep. We use a novel method to infer sleep data from the phone without the user doing anything outside their 
normal routine or using any form of makers from self-report. We introduced this “best effort” sleep technique 
and validated in [14]. Since then it has been used in a number of studies [1, 63, 64]. The classifier infers sleep 
duration, sleep onset time, and wake time each 24 hour period day[14, 63, 64]. The classifier does not infer naps. 
It simply computes the longest period of inferred sleep. The sleep classifier approximates sleep duration with in
+/- 30 minutes. The sleep inference is based on four sensors on the phone: ambient light, audio amplitude, activity, 
and screen on/off [14]. In addition, we can observe disrupted sleep by measuring phone activity during the sleep 
period (e.g., lock/unlock data). It is well-known sleep and changes in sleep patterns are strongly correlated with 
mental health; a result confirmed using mobile passive sensing in the StudentLife study [64] for depression. We 
report in [4] that atypical activity at night (indicating fractured sleep) was linked to one of the relapse events in 
the CrossCheck study.

Phone usage, calls, and texting. We compute the number of phone lock/unlock events and the duration that 
the phone is unlocked. We also compute the number and duration of incoming and outgoing phone calls and the 
number of incoming and outgoing SMS messaging.

Ambient environment. CrossCheck activity infers behavioral characteristics of not only the user but also 
attempts to quantify where the user resides (e.g., significant places such as home, work, etc) and the contextual 
information associated with a location. We compute features to measure the ambient sound and light conditions of 
the user’s surrounding environment. We compute the mean audio amplitude to determine the acoustic conditions
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ranging from quiet to loud environments. We also compute the standard deviation of the audio amplitude to

gauge if the audio environment is ambient (e.g., loud air conditioning) or active (e.g., people talking). Similarly, we

compute mean and standard deviation of light amplitude to capture the characteristics of the light environment.

4.2.3 Self-reported Ecological Momentary Assessment. Patients periodically respond to a set of short questions

related to their symptoms and functioning using their phones. The CrossCheck app administers a 10-item

EMA [63] every Monday, Wednesday and Friday. The EMA items are listed in Table 2. Each item scores from

0-not at all to 3-extremely. Amongst the 10 items, 5 items are positive items (i.e., feeling calm, social, sleeping

well, think clearly, and hopeful about the future) and the remaining 5 items are negative items associated with

symptoms (i.e., bothered by voice, visual hallucinations, feeling stressed, worry about been harmed by other

people, and depressed). We use each item’s score as a self-report feature to capture symptoms and affect. We

also calculate the EMA negative score, positive score, and sum score from the responses [63]. The positive and

negative scores represent the sum of all positive and negative items, respectively. The sum score is the positive

score minus the negative score.

Table 2. The CrossCheck self-reported EMA questions [63]

Prompt: “Just checking in to see how you’ve been doing over the last few days”.

Have you been feeling CALM?

Have you been SOCIAL?

Have you been bothered by VOICES?

Have you been SEEING THINGS other people can’t see?

Have you been feeling STRESSED?

Have you been worried about people trying to HARM you?

Have you been SLEEPING well?

Have you been able to THINK clearly?

Have you been DEPRESSED?

Have you been HOPEFUL about the future?

Options: 0- Not at all; 1- A little; 2- Moderately; 3- Extremely.

4.2.4 Feature Set Constructions. The dataset has two sets of features: passive sensing features and self-report

EMA features. In order to construct the feature sets, we first compute the daily feature time series. For example,

for a participant evaluated on day d , we compute the daily sensing features and EMA features from day d − 31
to day d − 1. Take conversation duration as an example, we compute the total conversation durations over the

24-hour day and four 6-hour epochs everyday from day d − 31 to day d − 1. The result is four conversation

duration time series. We then compute four features from each of the time series: a mean to capture the level of

behavior and three slopes to capture behavior changes.

Time series means. We compute the mean of the daily feature time series. The mean describes the average

behavior or self-reported symptoms during the 30-day period. For example, the mean conversation duration over

the 30-day period is the average conversation duration the participant is around everyday.

Time series slopes. We compute the slopes of the daily feature time series to describe how behavior or

self-reported symptoms change overtime. We fit the feature time series with a linear regression model and use the

regression coefficient as the slope. The slope describes the direction and the steepness of the change. For example,

a positive slope in conversation duration indicates the participant is around more and more conversations,

whereas a negative slope indicates the surrounding conversations decrease over time. The absolute value of the
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slope shows how fast the conversation duration changes. We compute three slopes for each time series: over the 
prediction time frame (slope), over the first 15 days of the prediction time frame (slope 1), and over the last 15 
days of the prediction time frame (slope 2). In summary, we extract 486 features from the passive sensing and 
EMA data. The passive sensing feature set has 434 features and the EMA feature set has 52 features. We use the 
same feature extraction method to compute features for weekly 7-item BPRS prediction.

4.2.5 Passive Sensing Inclusion Criteria. We define a “good day” as a day with more than 19 hours of the 
sensing data. In order to avoid missing data skewing the time series features in the prediction time frame, we 
need to control the data completeness in the 30-day time frame. We include time frames with more than 20 good 
days of the sensing data. As a result, we take a conservative approach to collection of data to increase the fidelity 
of the data signal. In addition, we use 116 7-item BPRS records and corresponding features from 36 participants 
for evaluating the 7-item BPRS prediction performance. For the 36 participants included in the analysis, 17 
participants are females and 19 are males. 14 patients are African American, 1 Asian, 9 Caucasian, 3 Pacific 
Islander, 8 Multiracial, and 1 did not disclose. The average age of the 36 participants is 35 years. 8 participants 
reported they previously owned basic cell phones, 9 did not own any type of cell phone, 19 previously owned a 
smartphone.

5 PREDICTION MODEL AND RESULTS
In this section, we present the CrossCheck 7-item BPRS prediction model and its prediction performance. We 
compare the prediction accuracy between three different feature setups: (i) using both the passive sensing feature 
set and the EMA feature set to predict 7-item BPRS; (ii) using just the passive sensing feature set to predict 
7-item BPRS; and (iii) using just the EMA feature set to predict 7-item BPRS. We report the prediction accuracy 
obtained by two cross validation methods: leave-one-record-out cross validation and leave-one-subject-out cross 
validation. We then discuss the most significant features selected by the prediction models. We use regression 
analysis to explore the linear relations between the selected features and the 7-item BPRS score. Finally, we 
present an example of predicting a participant’s weekly 7-item BPRS scores.

5.1 Predicting BPRS Scores
We use Gradient Boosted Regression Trees (GBRT) [22, 52] to predict the 7-item BPRS scores. GBRT is an 
ensemble method that trains and combines several weak regression trees to make accurate predictions. It builds 
base estimators (i.e., regression trees) sequentially. Each estimator tries to reduce the bias of the previously 
combined estimators. GBRT has many advantaged inherited from the tree based classification and regression 
models: that is, it is less sensitive to outliers [33] and robust to overfitting [20]. It computes feature importance 
measures, which can be used for feature selection.
In order to understand the prediction accuracy of the three different feature setups, we train three models

with (i) using both the passive sensing features and the EMA features; (ii) using just the passive sensing features; 
and (iii) using just the EMA features. We evaluate the prediction accuracy with leave-one-record-out cross 
validation and leave-one-subject-out cross validation. The leave-one-record-out cross validation leaves one 7-item 
BPRS example out from the dataset as the testing example and use the rest of the examples for training the 
model. The results from the leave-one-record-out cross validation show the prediction accuracy of predicting 
an existing participant’s 7-item BPRS score. The participant’s previous clinician rated 7-item BPRS scores are 
available to the system to improve the prediction accuracy by incorporating the data to the training examples.

The leave-one-subject-out cross validation trains the model with data from subjects other than the testing subject 
and tests on the testing subject’s data. The results from the leave-one-subject-out cross validation shows the 
prediction accuracy of predicting a new participant who just joined the study when their clinician rated 7-item 
BPRS scores are not available to the system.
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Feature selection. Considering the high dimensionality of the feature space (i.e., 486 features) and the relatively

small number of training examples that exist (i.e., 116 BPRS surveys), we need to significantly reduce the feature

space dimensionality so that the prediction model can be properly trained. We select features based on GBRT

feature importance. GBRT computes feature importance by averaging the number of times a particular feature

is used for splitting a branch across the ensemble trees, higher values are deemed as more important. The

feature importance value ranges from 0 to 1, where higher values indicate more important features. We train the

GBRT model on all the 7-item BPRS data. We select features with a feature importance greater than the average

importance value of all features. We repeat this process until no more than 20 features are left. The heuristic 20

feature rule is based on our experiments in which we find we get higher training error with a lower or higher

threshold. We repeat this process for the three feature set setups as discussed above: that is, passive sensing and

EMA, passive sensing only, and EMA only.

Prediction performance. We use mean absolute error (MAE), the Pearson’s r, and generalized estimating

equations (GEE) [10, 17, 43, 69] to evaluate the prediction performance. MAE describes the bias of the predictions.

The Pearson correlation treats the predicted BPRS scores as independent variables. The Pearson’s r describes

how well the predictions capture the outcome’s variance. GEE focuses on estimating the average response over

the population [43]. It is a more robust method to evaluate correlations between repeated measures. The GEE

coefficient shows the direction of the correlation and the p-value indicates the statistical significance of the

coefficient.

Table 3. Prediction performance

passive sensing + EMA passive sensing EMA

leave-one-record-out

MAE 1.45 1.59 1.62

Pearson’s r 0.70* 0.63* 0.62*

GEE coeff 1.05* 1.11* 0.81*

leave-one-subject-out

MAE 1.70 1.80 1.90

Pearson’s r 0.61* 0.48* 0.50*

GEE coeff 0.99* 0.93* 0.81*

* p < 0.0001

Table 3 shows the mean absolute error, the Pearson’s r, and GEE coefficient for all models predicting the

BPRS score. The leave-one-record-out cross validation with both passive sensing and EMA features achieves

the best result with MAE = 1.45, meaning we can predict the 7-item BPRS score with on average ±1.45 error
(3.5% of the scale). The predicted 7-item BPRS scores strongly correlate with the 7-item BPRS ground truth

(i.e., clinician scored BPRS surveys) with r = 0.70,p < 0.0001. The result shows our existing system can

accurately predict patients’ 7-item BPRS scores. The result gives us confidence to track symptoms every week.

The prediction performance for leave-one-record-out cross validation using only passive sensing or EMA features

is MAE = 1.59, r = 0.63,p < 0.0001 (3.8% of the scale) and MAE = 1.62, r = 0.62,p < 0.0001 (3.9% of the scale),

respectively. The leave-one-subject-out cross validation offers the best prediction performance using both passive

sensing and EMA features with MAE = 1.70 (4.0% of the scale). The predicted 7-item BPRS scores strongly

correlate with the 7-item BPRS ground truth with r = 0.61,p < 0.0001.
The prediction performance for leave-one-subject-out cross validation using only passive sensing or EMA

features is MAE = 1.80, r = 0.48,p < 0.0001 (4.3% of the scale) and MAE = 1.90, r = 0.50,p < 0.0001 (4.5% of

the scale), respectively. When comparing using both passive sensing and EMA features, results in a 0.1 and

0.2 increase in absolute errors, respectively. Again, passive sensing features outperforms EMA features in term

of MAE. Figure 4 shows the cumulative distribution function (CDF) of the absolute error of the 7-item BPRS
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predictions in greater detail. In both cross validations, we see combining the passive sensing and EMA features

performs better than just using passive sensing features, which in turn outperforms EMA features.
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Fig. 4. The cumulative distribution function (CDF) of the absolute errors for leave-one-record-out cross validation and leave-
one-subject-out cross validation. Using both passive sensing and EMA features results in the best prediction performance, 
followed closely by passive sensing alone, whereas using only EMA features presents the worst prediction performance.

Within-individual prediction errors. Figure 5 shows the average within-individual prediction error of the six 
models with the different feature setups and cross-validation methods. The order of the participants shown in the 
plots is determined by their average clinician rated BPRS scores. We observe that all six models archive lower 
prediction errors for participants with lower clinician rated BPRS scores but higher errors for participants with 
higher clinician rated BPRS scores. Judging from Figure 3(a) most of the clinician rated BPRS scores are between 
7 and 12. Therefore, the dataset is unbalanced and skews to lower BPRS scores (< 12). The GBRT models are 
undertrained for higher BPRS scores (≥ 12). As a result, the models underestimate high-BPRS-score participants’ 
scores (i.e., participants with average BPRS ≥ 12). The prediction models need more high-BPRS-score participants’ 
data to improve the prediction performance. The impact of prediction errors on clinical practice is discussed in 
Section 5.3.

5.2 Interpreting Selected Features
We use bivariate regression analysis to understand the linear relationship between the features selected by 
GBRT feature importance measures and the 7-item BPRS scores. Considering the longitudinal nature of our 
dataset; that is, because data from the same subject is likely correlated we apply generalized estimating equations 
(GEE) [10, 17, 43, 69] to determine associations between each of the selected features and the 7-item BPRS scores. 
In order to better understand the regression results, we normalize each feature to zero mean and one standard 
deviation so that the coefficients are within a reasonable range. Table 4 shows the 13 selected features from the 
model using both passive sensing and EMA features based on the feature selection criteria described in Section 5.1. 
Out of the 13 features, two are self-reported EMA features associated with hearing voices and being social and 11 
are passive sensing features. The passive sensing features cover a broad range of behaviors: unlocking phones, 
conservation, being stationary, visiting different locations, and being in different ambient acoustic environments. 
Interesting enough, the model selects the duration that a patient is stationary or in vehicle (we consider the 
patient as stationary while in a vehicle) as a predictor rather than simply the duration of being stationary. It
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(a) passive sensing + EMA leave-one-record-out.
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(b) passive sensing + EMA leave-one-subject-out.
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(c) passive sensing leave-one-record-out.
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(d) passive sensing leave-one-subject-out.
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(e) EMA leave-one-record-out.
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(f) EMA leave-one-subject-out.

Fig. 5. The average within-individual prediction error of the six models. The patients are ordered by their average rated

BPRS scores. The vertical dashed line separate patients with average BPRS score ≤ 12 and patients with BPRS score > 12.

The horizontal lines labels the region with prediction error more than -2 and less than 2. Patients with higher rated BPRS

scores get worse predictions. This is because the dataset is skewed to patients with lower BPRS scores.

indicates that the combination of the stationary label and the in vehicle label gives a stronger 7-item BPRS

predictor. GEE finds four significant associations between the selected features and the 7-item BPRS scores. For

example, patients who report hearing voices, tend to use their phone more often during the evening period,

are typically around more voices (i.e., more audio frames are labeled as human voice) in the morning, spend an
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increasing amount of time in more active ambient sound environments (i.e., there is more variation in audio

volume over time) in the morning during the first 15 days of the 7-item BPRS prediction time frame; these patients

are more likely to have higher BPRS scores. The model selects seven slope features and six mean features for

prediction, which shows that behavior changes are good 7-item BPRS predictors.

Table 4. Selected features for the passive sensing and EMA model, features with p < 0.05 are in bold.

feature GEE coefficient p value

unlock number slope 1 0.248 0.505

ambient sound volume afternoon slope 0.236 0.484

voices EMA 0.994 0.006

unlock duration evening 0.914 0.025

ambient sound volume evening slope 2 0.491 0.100

call out number evening 0.791 0.086

social EMA slope 2 1.308 0.173

ambient sound volume standard deviation morning slope 1 0.600 0.008

stationary and in vehicle duration night slope 0.346 0.272

conversation duration slope -0.015 0.975

ratio of voice frames morning 0.647 0.041

number of visited locations -0.196 0.556

ratio of voice frames 0.310 0.356

Table 5 shows the 18 features selected from the prediction model for passive sensing features only. The features 
cover a wide range of behaviors. In comparison with the features selected using a combined model for passive 
sensing and EMA, the pure passive sensing model selects four additional features related to phone calls. GEE finds 
six significant associations between the selected features and the 7-item BPRS scores. Specifically, participants 
who decrease phone usage during the night, have more phone usage during the afternoon, stay in louder acoustic 
environments with more human voice, and show increasing visits to more places (i.e., locations) in the morning 
during the second 15 days of the 7-item BPRS prediction time frame; these patients are more likely to have higher 
7-item BPRS scores. Out of the 18 features, 12 are associated with behavior changes. Again, we observe that 
behavior changes are strongly predictive of 7-item BPRS scores. Specifically, conversation duration is not selected 
as a predictor whereas the change in conversation duration is considered a predictor of 7-item BPRS.

Table 6 shows the selected EMA features by the EMA model. GEE finds 4 significant associations between the
selected features and the 7-item BPRS scores. Specifically, patients who report decreasing sociability, feeling less 
calm, and increases in hearing voices and the feeling of being harmed are more likely to have higher BPRS scores.
In summary, a wide range of behaviors captured by phones are predictors of the 7-item BPRS score. We 

find that changes in behavior are more predictive than the absolute level of behaviors. The bivariate regression 
analysis, however, does not confirm that every selected feature is linearly associated with the 7-item BPRS scores.
This is because the regression analysis finds only linear association whereas the GBRT model is non-linear –
capturing non-linear relations between features and outcomes. Furthermore, prior work [25] has found features 
with little power at predicting outcomes when combined with other features can provide significant performance 
improvements.

5.3 Application of Predicting Weekly 7-item BPRS Scores
We use our prediction model to predict the 7-item BPRS scores each week. The model predicts weekly BPRS scores 
using both passive sensing and EMA features. The model is updated weekly using any new BPRS evaluations
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Table 5. Selected features for the passive sensing model, features with p < 0.05 are in bold.

feature GEE coefficient p value

unlock number night slope -0.896 < 0.001
ratio of voice frames slope 2 0.422 0.114

stationary and in vehicle duration night slope 0.346 0.272

unlock duration afternoon 0.857 0.039

conversation duration afternoon slope -0.145 0.624

call out duration slope 0.112 0.597

ambient sound volume night 0.158 0.603

ambient sound volume morning 0.906 0.006

call in duration morning 0.083 0.714

call out number afternoon slope 0.179 0.643

ratio of voice frames morning 0.647 0.041

ambient sound volume 0.769 0.008

ambient sound volume evening slope 2 0.491 0.100

number of visited locations morning s2 0.485 0.022

call out duration slope 2 -0.266 0.164

number of visited locations slope 2 0.065 0.835

conversation duration morning slope -0.368 0.081

distance traveled evening slope 0.141 0.178

from clinicians. Figure 6 shows an example of a patient’s predicted BPRS scores over a 10-week period. The

scores are computed weekly and reflected in weekly prediction reports automatically sent out every Sunday

evening to all researcher staff in the study. In this case, a clinician evaluated the patient during week 4 and

week 8 scoring a BRPS value of 7 (i.e., no symptoms) for each clinic visit. Please note, the differences between

clinician’s scores and the predicted scores may due to the different days the patient was rated and the predictions

were made. The predictions, however, show that the participants’ BPRS scores are slightly higher before the first

evaluation, between two evaluations, and after the second evaluation. The result shows that the prediction may

capture nuanced changes in the patient’s state that could not be observed with out the predictive reports and

mobile sensing. This example highlights the strength of our approach and vision. It may provide opportunities

for clinicians and care givers to reach out to outpatients.

Our research staff use the weekly 7-item BPRS predictions to determine if a patient is at risk and requires

reachout from the clinical team. A patient is at risk if the predicted 7-item BPRS score is above 12 or experiences

an increase of 10% or more since their last predicted 7-item BPRS score. The prediction errors would affect

how research staff determine whether a patient is at risk. Suppose a patient’s true BPRS score is 11, research

staff would correctly identify this patient as not at risk if the predicted score is below 12 (e.g., a negative error).

However, if the predicted score is more than 12 (i.e., a positive error greater than 1) the research staff would

incorrectly identify the patient as at risk (i.e., a false positive). Conversely, if a patient’s true BPRS score is 15,

which is above the cutoff, the research staff would correctly identify that this patient is at risk if the prediction

has a positive error. A negative error of more than 3 (i.e., predicted BPRS score is less than 12) would make the

research staff incorrectly identify the patient as not at risk. Figure 5(a) shows that the average absolute errors of

the predictions are below 2 for participants whose average BPRS scores are below 12, which indicates that they

are not likely to be incorrectly identified as at risk. For participants whose average BPRS scores are above 12, the

predicted scores are likely to be lower than the true score. However, the errors are not big enough to make the
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Table 6. Selected features for EMA model, features with p < 0.05 are in bold.

feature GEE coefficient p value

social -0.027 0.949

social slope 2 1.308 0.173

sum score -0.414 0.354

sleeping slope -0.211 0.360

calm slope -0.715 0.038

voices 0.994 0.006

harm 0.806 0.030

negative score 0.699 0.089

depressed 0.228 0.661

calm 0.013 0.976

think -0.116 0.796

stressed slope 0.217 0.440

sum score slope -0.340 0.266

stressed 0.222 0.616

social slope -0.369 0.264

negative score slope 0.239 0.499

think slope 0.101 0.829

positive score slope 2 -0.055 0.895

hopeful slope 0.242 0.152

voices slope 0.257 0.344

predicted scores below the cutoff. For example, participants 34,35’s lowest true BPRS scores are 15 whereas the 
errors are below -3 thus the predicted scores are still above the cutoff 12.
In addition to the cutoff, the research staff use the changes in the predicted BPRS scores to identify patients 

at risk. The predicted BPRS scores highly correlate with clinician rated BPRS scores. Therefore, how the BPRS 
scores change over time is a symptom deterioration indicator. We combine both the score cutoff and changes 
in two consecutive scores as symptom deterioration indicators for reachout. In the next section, we present a 
number of case studies that show that the predictive system reflects what is going on in patients lives.

The study is ongoing and we are evolving the BPRS prediction based patient-at-risk criteria described above to 
reduce false positives and false negatives.

6 PATIENT CASE STUDIES
The CrossCheck prediction model is re-trained each week if new clinician rated 7-BPRS scores are available. 
Each week our research staff review the weekly prediction scores of all patients in the smartphone arm of the 
randomized control trial to determine if patients are at risk – based on the criteria discussed previously. Once we 
identify that a patient might be at risk, our research staff outreach and contact the participant and the clinical 
team at the hospital. A natural question when building predictive infrastructure is how well the system predicts 
time varying symptoms of patients, and how well the system reflects the current symptoms and risk experienced 
by outpatients living out in the community. In what follows, we provide insights into the lives of three patients 
at the time our system indicates increasing symptoms. We show through anecdotal information from research 
staff and the clinical team when reaching out to patients when the prediction system indicates rising risk.
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Fig. 6. A participant’s predicted 7-item BPRS score over 10 weeks. The clinician gave a score 7 twice for this participant in

week 4 and week 8. The BPRS predictions, however, shows the scores changes during the two evaluations.

The first patient is a 55 year-old African American male diagnosed with schizophrenia, paranoid type. He

was clinically flagged on August 22, 2016 based on an elevated predicted 7-item BPRS score of 12.86. When our

research staff at the hospital contacted the patient on August 24, 2016, he endorsed symptom increases over the

past three months with increasing intensity over the past three weeks. He discussed negative thoughts he’d had

about his deceased mother who had passed away five years earlier. He said that he sees images of his mother in

his mind when she was in her 30s. However, she was in her 70s when she passed away. The patient also said

he believed these thoughts were present to make him feel “emotionally sick.” The on-site researcher (who is

located at the hospital) and patient discussed coping mechanisms, such as, relating these thoughts in therapy

to support persons, positive self-talk, and writing his thoughts down on paper as a reality check. Once the

researcher determined that the patient was not in any imminent danger, the researcher encouraged him to share

all these symptoms with his treatment team and then brought the call to an end.

As the study protocol dictates, once a researcher reaches out to a patient, the researcher then contacts the

clinical team to inform them of the CrossCheck prediction assessment and the symptoms reported by the patient.

In this case, the patient’s psychiatrist reviewed the new information and told the researcher that the patient had

been experiencing difficulty scheduling his next outpatient medication management appointment. Because of

this new information provided by the CrossCheck team the psychiatrist immediately reached out to the patient’s

case manager to coordinate an in-person visit, which occurred less than a week after the initial research outreach.

The psychiatrist determined during the clinical visit that the patient was below his baseline level of functioning

and adjusted his medication accordingly. This case shows the predictive system, outreach and clinical assessment

all concur strongly.

The next patient is a 63 year-old caucasian male diagnosed with schizophrenia. He was clinically flagged on

October, 17 2016 based on an increase in predicted BPRS score. Although the predicted 7-item BPRS score was

10.63, which fell short of the 12 point cut-off marker, the BPRS score represented an increased of 16% over the

previous week. In addition, self-reported EMAs indicated deteriorating symptoms and the passive sensing data

signaled limited sleep. On October 18, 2016 the patient was contacted by phone by a member of the research staff.

During the conversation, the patient reported he’d told his therapist the day before, October, 17 2016 that he

planned to kill himself on December 1, 2016. He endorsed thoughts of killing himself several times a day, but he

was able to hold off on these thoughts. He said he felt hopeless and negative about the future. In addition, he

said he had disturbed sleep due to bad dreams and flashbacks, which he experienced several times during the

night, most nights. The researcher and patient discussed ways to manage his thoughts, including mindfulness,

therapy, and attending his day program. He endorsed medication adherence with no disturbances in appetite.
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The patient’s treatment team, consisting of his psychiatrist and therapist, were notified immediately after the call 
of the patient’s mental status and symptom exacerbation. The patient informed his therapist the day prior to his 
plan to commit suicide on a specified date, and together they were able to complete a safety assessment, which 
included working on coping skills in treatment. Through the care coordination efforts by the research team and 
clinical team, the patient was placed on a high-risk list and monitored more closely by his treatment providers.

The researcher assessed the patient for safety and determined he was not in imminent danger to self or others.
The researcher and patient discussed ways to manage his thoughts, including mindfulness, therapy, and attending 
his day program. He endorsed medication compliance with no disturbances in appetite. The patient’s treatment 
team, consisting of his psychiatrist and therapist, were notified immediately after the call of the patient’s mental 
status and symptom exacerbation. The patient informed his therapist the day prior to his plan to commit suicide 
on a specified date, and together they were able to complete a safety assessment, which included working on 
coping skills in treatment. Through the care coordination efforts by the research team and clinical team, the 
patient was placed on a high risk list and monitored more closely by his treatment providers. This case represents 
an example where the predicted score was just below the risk threshold but the weekly percentage change was 
significant to flag the patient as potentially at risk.

The final patient is a 19 year-old Asian male diagnosed with psychosis not otherwise specified. On November 
1, 2016, our research staff noticed his predicted BPRS score was 16.71, which was a 12.7% increase from the last 
predicted score. The researcher was able to reach the participant for a verbal check-in on November 2, 2016. 
During the call, the patient denied all symptoms to the researcher, including any sleep disturbances, changes in 
eating behaviors, or auditory/visual hallucinations. He said that he was socializing well with his friends and 
family and endorsed medication adherence, denying any thoughts of self-harm or harm to others. The patient 
reported that he felt tired that morning and was unable to attend school that day. The researcher thanked the 
patient for his time and encouraged him to share any symptoms with his treatment provider. After several 
weeks of this patient rescheduling his weekly session with his therapist, on November 29, 2016, the therapist 
confirmed symptom increases. The therapist told the researcher, that the patient was symptomatic, experiencing 
psychosis in the form of auditory hallucinations, poor concentration, and distractibility. This case shows our 
system predicting increased symptoms, the patient not concurring with this assessment, but clinical experts 
confirming the prediction.

7 CONCLUDING REMARKS

The CrossCheck system discussed in this paper shows promise in using mobile phones and passive sensing to 
predict symptoms of schizophrenia for people living out in the community. The system and models show good 
performance using passive sensing and self-reports as well as just using passive sensing. A system based purely 
on passive sensing opens the way for continuous assessment of symptoms and risk as people go about their 
everyday lives.
The CrossCheck study is on-going. We plan to continue using the CrossCheck symptom prediction system 

to track and better understand patients’ symptoms during the remainder of the randomized control trial. Our 
system allows research staff and clinical teams to use the periodic reports to reach out and assess better how the 
predictions reflect real life experiences of our study participants; that is, we will further evaluate the system’s 
effectiveness at identifying participants experiencing deteriorated symptoms. We will use information from 
future case studies as feedback to refine our models and system. Ultimately we aim to develop a system capable of 
not just indicating rising risk, but rather, we aim to develop a model and associated systems to accurately predict 
relapse and through intervention and treatment adjustment keep patients healthy and out of hospital. As things 
stand today we do not have sufficient cases of relapse and hospitalizations in our cohort to build statistically 
significant models.
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We also recognize limitations of our work. We only had 116 BPRS clinician scored surveys to train our model.

Typically, in the lifetime of the study clinicians administer BRPS once per month on average for each patient –

12 per year for each patient. In our on-going study, outpatients do not experience severe symptoms often and

thus mostly report lower 7-item BPRS scores. Therefore, the current dataset is unbalanced and skews toward

lower BPRS scores, as discussed earlier in the paper. The unbalanced dataset causes our prediction models to

underestimate the BPRS scores of patients with higher clinician rated BPRS scores. However, we show that

clinicians can adjust the score cutoff for symptom deterioration and leverage the changes in predicted BPRS scores

to reduce the false negatives. To further improve BPRS prediction, we need to collect more data, especially from

patients with more severe symptoms. We would also need to apply re-sampling techniques, such as SMOTE [13],

to balance the dataset. While our initial results are promising we plan to address these limitations at the end of

the CrossCheck randomized controlled trial.

Another possible limitation is that all patients live in a large dense city and the models may not generalize to

other locations, such as, patients living in rural communities. Study adherence is also an issue. Patients break,

loose, lend, and neglect to use or charge their phones. In some cases they experience persistent cellular or WiFi

coverage issues for our system to successfully upload their data in a timely manner (i.e., once per day when they

are charging their phones and under cellular or WiFi). We continually try to think of innovative ideas to deal

with these issues and currently rely on technical outreach (as distinct from outreaches associated with increased

symptoms) and removing incomplete data if we do not have sufficient per day (i.e., at least 19 hours per day as

discussed in Section 4 for reasons of model performance. Finally, we discussed three case studies that showed

the predicted system correctly reflected increasing risk; that is, the CrossCheck symptom prediction system

accurately captured the changing conditions of these patients as reported by the research and clinical teams that

reached out to them or interacted with them during subsequent clinical visits, respectively. These results look

very promising.
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