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ABSTRACT
In this paper, we propose BodyBeat, a novel mobile sensing system
for capturing and recognizing a diverse range of non-speech body
sounds in real-life scenarios. Non-speech body sounds, such as
sounds of food intake, breath, laughter, and cough contain invalu-
able information about our dietary behavior, respiratory physiol-
ogy, and affect. The BodyBeat mobile sensing system consists of
a custom-built piezoelectric microphone and a distributed compu-
tational framework that utilizes an ARM microcontroller and an
Android smartphone. The custom-built microphone is designed
to capture subtle body vibrations directly from the body surface
without being perturbed by external sounds. The microphone is
attached to a 3D printed neckpiece with a suspension mechanism.
The ARM embedded system and the Android smartphone process
the acoustic signal from the microphone and identify non-speech
body sounds. We have extensively evaluated the BodyBeat mobile
sensing system. Our results show that BodyBeat outperforms other
existing solutions in capturing and recognizing different types of
important non-speech body sounds.
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1. INTRODUCTION
Human speech processing has been studied extensively over the

last few decades. The emergence of Apple Siri, the speech recog-
nition software on iPhones, in many ways, is a mark of success
for speech recognition technology. However, there is very little
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research on using sensing and computing technologies for recog-
nizing and interpreting non-speech body sounds. Non-Speech body
sounds contain invaluable information about human physiological
and psychological conditions. With regard to food and beverage
consumption, body sounds enable us to discriminate characteristics
of food and drinks [12]. Longer term tracking of eating sounds
could be very useful in dietary monitoring applications. Breathing
sounds, generated by the friction caused by the air flow from our
lungs through the vocal organs (e.g. trachea, larynx, etc.) to the
mouth or nasal cavity [26], are highly indicative of the conditions of
our lungs. Body sounds such as laughter and yawn are good indica-
tors of affect. Therefore, automatic tracking these non-speech body
sounds can help in early detection of negative health indicators by
performing regular dietary monitoring, pulmonary function testing,
and affect sensing.

During the past few years, a number of mobile and wearable
sensing systems have been developed to detect non-speech body
sounds. For example, Larson et al. [17] used the smartphone’s
microphone to detect cough. Hao et al. [14] also used the
smartphone’s microphone to capture both snoring and coughing
sounds for assessing the quality of sleep. In [30], Yatani and Khai
developed a wearable system that used a condenser microphone
with a stethoscope head to capture a variety of non-speech sounds.
Nirjon et al. [23] integrated a standalone microphone into an
earphone to extract heartbeat information. All these existing work
used condenser microphones that capture sounds via air pressure
variations. However, we argue that the condenser microphone is
not the most appropriate microphone to capture non-speech body
sounds. One reason is that some non-speech body sounds such as
eating and drinking sounds are very subtle and thus generate very
weak air pressure variations. This makes them very difficult to be
captured by condenser microphones. Second, the condenser micro-
phone is very susceptible to external sounds and ambient noises.
As a result, the quality of body sounds captured by condenser
microphones decreases significantly in real-world settings.

In this paper, we present the design, implementation, and eval-
uation of BodyBeat: a mobile sensing system that is capable of
capturing a diverse set of non-speech body sounds and recognizing
physiological reactions that generate these sounds. BodyBeat is
built on top of a novel piezoelectric sensor-based microphone that
captures body sounds conducted through the body surface. This
custom-made microphone is designed to be highly sensitive to
subtle body sounds and less sensitive to external ambient sounds
or external noise. To recognize these non-speech body sounds,
we carefully selected a set of discriminative acoustic features
and developed a body sound classification algorithm. Given
the computational complexity of this algorithm and the resource
limitation of the smartphone, we partitioned the whole com-



putational framework and implemented a distributed computing
system that consists of an ARM micro-controller and an Android
smartphone. To evaluate the effectiveness of BodyBeat, we tested
the custom-made microphone, the classification algorithm, and
the distributed computing system using non-speech body sounds
collected from 14 participants. Specifically, the main contributions
of this paper are: (1) we design and implement a custom-made
piezoelectric sensor-based microphone that is able to capture a
diverse set of body sounds whiling dampening external sounds
and ambient noises; (2) we develop a body sound classification
algorithm based on a set of discriminative acoustic features; (3) we
implement the signal processing and machine learning algorithm
on an ARM micro-controller and an Android smartphone; and
finally (4) we benchmark the performance of our custom-made
microphone against other state-of-the-art microphones, evaluate
the performance of the body sound classification algorithm, and
profile the system performance in terms of CPU and memory usage
and power consumption.

The paper is organized as follows. Section 2 outlines the
challenges and design considerations of the development of the
body sound sensing system. Section 3 presents the design and test
results of our custom-made piezoelectric sensor-based microphone.
In Section 4, we describe our feature selection and classification
algorithms for recognizing a diverse set of body sounds. In Section
5, we explain in details the implementation of the computational
framework on the ARM micro-controller and the Android smart-
phone. We discuss the potential applications of BodyBeat in
Section 6. Finally, we give a brief review on some of the existing
work in Section 7 and conclude this paper in Section 8.

2. DESIGN CONSIDERATIONS
In this section, we discuss the challenges of capturing and

recognizing non-speech body sounds. We also describe how we
tackled these challenges in the design of BodyBeat. The detailed
design is described in Section 3 and 4.

2.1 Capturing Non-Speech Body Sounds

Figure 1: Illustrates approximate frequency range and relative
loudness of selected body sounds

In the context of mobile sensing, the built-in microphone is the
most widely used sensor for detecting acoustic events [22, 20, 21].
However, the mobile phone microphone (typically an electret or
condenser microphone) is specifically designed for the purpose of
voice communication and thus the frequency band is optimized for
speech. Non-speech body sounds are generated by complex phys-
iological processes inside the human body. After body sounds is

produced inside our body, the energy of the body sounds decreases
significantly by the time they reach the body surface. Therefore,
non-speech body sounds are in general barely audible. Based on the
frequency differences between voice and body sounds, the mobile
phone microphone is not the best acoustic sensor for capturing
non-speech body sounds. In building the BodyBeat microphone,
we considered the following design requirements:

1. The microphone should capture a wide array of subtle body
sounds lying in different portion of the frequency spectra.

2. The microphone should be robust against any external sound
or ambient noise.

3. The microphone should have mechanisms compensating
friction noise due to user’s body movement.

The first two requirements are essential for continuous capture of
different body sounds with a high signal-to-noise ratio. In the third
requirement, the mechanical movement of the body may generate
noise due to the friction between body surface and the microphone,
which may render captured body sounds uninterpretable. There-
fore, we should have mechanism with the microphone to avoid the
generation of the friction noise due to users’ body movement.

We propose a new microphone, BodyBeat, that captures a wide
range of non-speech body sounds. Specifically, BodyBeat adopts a
custom-built piezo-electric sensor to capture these sounds. Since its
worn around the user’s throat, the bone conduction sensor is very
sensitive to the vibration caused by non-speech body sounds in the
frequency spectrum of 20Hz to 1300Hz. In addition, BodyBeat
is also customized to dampen any external sound or noise from
the ambient environment. In this manner, most of the features
of non-speech body sounds are preserved and captured without
being skewed by external sounds. In Section 3, we describe our
custom-built microphone and demonstrate its superior performance
in capturing non-speech body sounds, compared to a range of other
state-of-the art microphones.

2.2 Recognizing Non-Speech Body Sounds
Compared to speech sounds, non-speech body sounds have

distinct frequency spectrum. Specifically, the frequencies of speech
sounds range from 300Hz to 3500Hz. In comparison, non-speech
body sounds are located within the lower region of the frequency
spectrum, ranging from 20Hz to 1300Hz. As an example, Figure 1
illustrates the frequency spectrum of four non-speech body sounds.
As shown, the human heartbeat is one of the more subtle body
sounds with a low magnitude from 20Hz to 200Hz. Breathing
sounds (ranging from 20Hz to 1300Hz) are much louder in the
20Hz to 200Hz range but have a large loss in magnitude as the
frequency range increases [29]. The unique nature of the body
sound’s power spectra suggests that spectral features such as power
in different filter banks or spectral centroid, spectral variance,
spectral entropy might contain valuable information to discriminate
among body sounds. Moreover, the concentration of the body
sound in the low frequencies warrants higher attention to the minute
changes in the low frequencies, in other words higher frequency
resolution in the low frequencies. In a previous exploration, Yatani
and Khai [30] also used logarithmic filter banks (having center
frequencies and bandwidth increase logarithmically).

We begin our exploration by designing and extracting a variety
of acoustic and statistical features with the objective of comprehen-
sively describing the characteristics of body sounds. We critically
examine the performance of the feature pool and selected a subset
of them, which are the best in modeling body sounds. Lastly, we
train our inference algorithm and optimize for different parameters.



Sensor ID Origin Type of Mic Sensor Diaphragm Material Using Stethoscope Head Reference
M1 Custom-made brass piezo latex no -
M2 Custom-made brass piezo silicon no -
M3 Custom-made film piezo latex no -
M4 Custom-made brass piezo latex yes -
M5 Custom-made condenser plastic yes BodyScope [30]
M6 Off-the-shelf unknown unknown no Invisio [3]
M7 Off-the-shelf unknown unknown no Temcom [7]

Table 1: Introducing all the microphones considered for recording subtle body sounds

2.3 Resource Limitations and Privacy Issues
While designing BodyBeat, we considered the resource require-

ments of various computational frameworks and opted for tech-
niques that were capable of running analog to digital conversion of
the audio signal; acoustic feature extraction; and classification of
body sounds in real-time. Implementing the algorithm entirely in
the Android smartphone would be very computationally expensive,
and it would cause an unnecessary battery drain. In contrast,
another extreme implementation approach would be transferring
all the data to a web-based service that classifies the raw (or
semi-processed audio signal) to different body sounds. This ap-
proach requires good internet connectivity to transfer large amounts
of data. Therefore, we optimized our approach by implementing
our algorithm in two different platforms: an ARM micro-controller
and an Android smartphone.

The audio codec and portions of the feature extraction were
implemented on the ARM micro-controller. The ARM unit also
employed a frame admission control using some acoustic features,
which filtered unnecessary frames that contained no body sounds
of interest. If the ARM unit finds a frame containing a specified
body sound, it sends the frequency spectrum of the current frame
to the Android phone via Bluetooth. We employed a fast and
computationally efficient fix-point signal processing algorithm in
the ARM unit. Unlike a web-based implementation, this distributed
implementation infers body sounds in real-time, which will allow
for real-time intervention applications in the future.

We also take the privacy issues into consideration in the design
of BodyBeat. To safeguard privacy, BodyBeat filters out the
user’s raw speech data via an admission control mechanism. In
addition, the BodyBeat microphone is specifically designed to be
robust against external sounds and thus any speech from other
conversation partners is not captured.

3. MICROPHONE DESIGN AND EVALUA-
TION

In this section, we present the design of our BodyBeat micro-
phone for capturing non-speech body sounds. We compare the
performance of a set of seven microphones based on the design
requirements presented in Section 2.1.

3.1 Microphone Design
Figure 2 illustrates the architecture of our custom-built piezo-

electric sensor-based microphone. The microphone was built
around a piezoelectric sensor and a 3D printed capsule. This cap-
sule is made with a 3D printer using Polyactic Acid (PLA) filament.
The capsule was then filled with a soft silicone (shore hardness
of 10) as internal acoustic isolation material. The piezoelectric
sensor was then placed in the capsule with the back of the sensor
lying on top of the soft silicone filling to capture the subtle body
sound vibrations. After the silicone filling cured, the exposed

Figure 2: Diagram of piezoelectric sensor-based microphone

front of the piezoelectric sensor was covered with a thin diaphragm
(~.001mm), made of either silicone or a piece of latex. Lastly,
the exterior of the capsule was covered using external acoustic
isolation material, which is a hard, dense, brushable silicone (shore
hardness of 50). The internal and external acoustic isolation
material (respectively the soft silicone layers inside the capsule and
hard silicone layer outside the capsule) act as acoustic isolators,
which helps to reduce external noise. In addition, the soft silicone
inside the capsule helps the piezoelectric sensor to absorb the
surface vibrations without damping the piezoelectric transduction
too much. For this design, selecting the right diaphragm material is
crucial. A material that has very similar acoustic properties of mus-
cle and skin will maximize the signal transfer to the microphone.
Moreover, as the diaphragm is placed on users’ skin, we considered
inert materials so as to not irritate users’ skin.

3.2 Performance Benchmarking
In this work, we built four different types of microphones

(M1, M2, M3, and M4) based on the same architecture shown in
Figure 2. We varied two variables (type of piezo and diaphragm
material) to build these four microphones (M1, M2, M3, and M4).
In addition, we duplicated the microphone proposed in [30]. It
(M5) is made with a small condenser microphone attached to a
stethoscope head. We also considered two additional state of the
art commercial bone conduction microphones: M6 [3] and M7 [7].
Instead of capturing sound directly from the air, both M6 and M7
are designed to pick up sound conducted through bone from direct
body contact. They also have been extensively used for speech
communication under highly noisy environment for army, law
enforcement agencies, fire rescuers etc. We ran two tests using the
seven microphones listed in table 1. Firstly, a frequency response
test is ran to compare the sensitivity of different microphones.
Then we run an external noise test to compare the susceptibility
of different microphones. Based on these two test, we select a
microphone that is highly sensitive to the body sound and less



susceptible to external sound. Lastly, we run a microphone position
test to select the optimal head location to attach the BodyBeat
microphone to capture a wide range of body sounds.

3.2.1 Frequency Response Test
We ran a series of frequency response tests from 20Hz to

16,000Hz with all microphones (M1 to M7). The frequency
response test allowed us to measure the inherent characteristics
of each microphone. This is a common test to help engineer-
ing build microphones according to certain specifications and to
classify them based on what they are best at recording. For our
requirements, a higher and relatively flat and unaltered response
in the low frequency range allows us to detect subtle sounds and
indicates that no anomalies were introduced during the recording.

Microphone	  

Ballis/c	  Gel	   Bone	  	  
Conduc/on	  
Transducer	  Acous/c	  Isolator	  

Figure 3: Frequency Response test setup, used to establish the
sensitivity of each microphone from 20Hz to 16kHz

Figure 4: Frequency Response comparison of different micro-
phones from 20Hz to 16kHz

We used a bone conducting transducer as our output device and
created a sweeping tone that changed its frequency from 20 Hz to
16,000 Hz. An 8 x 8 x 5.5 centimeter block of ballistic gel was
placed on top of the bone conducting transducer. The ballistic gel
block is a standard proxy of human flesh or muscle because of its
similarity in acoustic properties (e.g. speech of sound, density,
etc.). We firmly attached different microphones to the other side
of the ballistic gel block. Figure 3 shows the setup of the frequency
response test. We ran this experiment for all the seven different
microphones listed in table 1.

Figure 4 shows the frequency responses of different micro-
phones. Our results indicate that with a constant gain, M1, M2,
and M3 are the most sensitive below 700Hz. M3 maintained the
flattest response, but lower than that of M1’s and M2’s. The
most inconsistent response pattern was found in M4, which showed

significant peaks and drop-offs at seemingly random intervals along
the frequency axis. M6 and M7 have similar response patterns.
M5’s response was mostly flat under 600Hz, but it showed similar
trends to M6 and M7 above 600Hz. Above 700Hz, M1-M5 had
similar response patterns though the magnitude of M5’s response
was significantly lower. Unlike other microphones, we found a very
irregular oscillating frequency response for M6 and M7, which is
also considerably lower in the lower part of the frequency range
(below 7000 Hz). One explanation of this phenomenon is that
most of the off-the-shelf microphones (M6 and M7) are designed
for recording speech; thus, they are not optimized for body sounds
that lie in relatively lower part of the frequency spectrum. As most
of our targeted non-speech body sounds are in a lower part of the
frequency range, the frequency response of M2 suggests that it is
the most appropriate microphone for capturing subtle body sounds.

3.2.2 External Noise Test

Figure 5: External noise test setup

The external noise test was performed to compare the micro-
phone’s robustness against any external or ambient noise. Four
prerecorded external noises were played through two speakers to
recreate the scenarios in this experiment. These sounds included:
white noise, social noise (recorded in a restaurant), traffic noise
(recorded in an intersection of a highway), and conversational noise
(recorded while another person was talking). For this test, each
microphone was positioned over the ballistic gel so that the element
was facing the gel and the speakers were facing the back of the
microphone. The different recordings were played through the
speakers (i.e., audio in air), approximately one meter above the
microphone. Figure 5 illustrates the setup of the external noise test.
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Figure 6: Comparison of different microphone’s susceptibility to
different type of external sounds or ambient noises

We measure susceptibility (in db) using equation 1, where
Powermic is the power of the signal recorded by the microphone
and Powerspeaker is the power emitted from the speaker. We



used the standard Root Mean Square (RMS) metric to measure
the power. Figure 6 illustrates the susceptibility of different
microphones under different types of external sounds. The smaller
value of the susceptibility metric of the custom-built M1, M2 and
M3 shows that they are more sound proof against external sounds.
M5 turned out to be the least robust against external noise. The two
off-the-shelf microphones (M6 and M7) were less robust against
external sound than M1-M3.

Susceptibility = 10 ∗ log( Powermic

Powerspeaker
) (1)

Based on the frequency response test and the external noise test,
we found our custom-built microphone, M2, to be the optimal
microphone. While the external noise test was better for M1
than M2, the overall frequency response of M2 was consistently
higher in magnitude, up to approximately 2000Hz. The difference
in external noise was much less significant than the difference
in frequency response between M1 and M2. The construction
of these two microphones was identical except for one feature:
the diaphragm of M1 was covered with a thin piece of latex,
while the diaphragm of M2 was covered with a thin piece of
silicone. This leads us to the conclusion that latex is mildly better at
preventing external noise than silicone, but silicone is much better
at transferring vibration below 2000Hz than latex. Therefore, we
selected M2 for the BodyBeat microphone, as it is very insensitive
to external sounds and highly sensitive to any sound generated
inside the body (including speech).

3.3 Microphone Position Test
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Figure 7: Comparing different body positions (jaw, skull, and
throat) for capturing different types of body sounds

We conducted a microphone position test to find the optimal
position to place the custom microphone (M2) in order to enable
it to capture a wide range of body sounds. This test consisted of
two parameters: the first being body position (jaw, skull, & throat)
and the second being body sounds (eating, drinking, breathing,
coughing, & speech). We recorded the five types of body sounds
with M2 in each of the three body positions, and we then compared
the power of the captured signals across different body positions.
Figure 7 illustrates the power (10log(P ) in decibel unit) of the
signals captured at different body positions.

Among the three locations, the throat gives us the maximum
power (db) for all types of non-vocal body sounds, except eating.
The power of the captured eating sounds was similar in all three lo-
cations. However, the eating sound captured in the skull contained
slightly higher power than that captured in other positions. This is
likely because the eating sound can very easily propagate through
the teeth and then through the jaw to the skull. Considering our
goal of capturing the wide range of body sound classes, the throat
is the right location for the BodyBeat microphone.

(a) (b)

(c) (d)

Figure 8: (a) Microphone attached to suspension mechanism (front
view), (b) Microphone attached to suspension (back view), (c)
3D printed neck band, (d) Neck band, suspension capsule, and
microphone fully assembled, (e) User wearing the fully assembled
system

3.4 Neckpiece Design
To capture a wide range of non-speech body sounds from

the throat area, we designed a neckpiece to securely attach the
custom-made microphone to the throat area. In order to handle
users’ daily interactions and maintain performance, we also con-
sidered friction noise when designing the neckpiece. Human body
movements generate noise due to the friction between the silicone
diaphragm and the skin. We maintained usability by adopting a
suspension mechanism, which allows the microphone’s position
to be partially independent of the neckpiece. In other words, the
microphone remains in place and firmly attached to the neckpiece
even when moving, thus minimizing friction noise. Figures 8a and
8b illustrate the top and bottom view of the microphone attached to
the suspension capsule.

The microphone is attached to the suspension capsule with four
elastic strings (approximately 1mm in diameter). The suspension
allows for approximately four millimeters of movement on all sides
and four millimeters of vertical movement (for a total of eight
millimeters of movement on all three axes). Figure 8c shows the 3D
printed neck band. The suspension capsule is attached to the neck
band by placing the two cylindrical knobs into the corresponding
holes on the two small, inward pointing extensions on the neck
band. The band is flexible, which allows for the capsule to be easily
placed in (or taken out) and still be tightly attached to the neck
band (Figure 9). This design also allows the suspension capsule and
microphone to pivot on the horizontal axis, allowing users to adjust
for comfort. In figure 8, the current BodyBeat wearable system
is still relatively big in size, which may cause some wearability
issues. we will iteratively improve the design of BodyBeat. We will
also look for opportunities to integrate BodyBeat into promising
wearable systems (such as Google Glass) to enhance wearability.

4. CLASSIFICATION ALGORITHM

4.1 Data Collection
We recruited 14 participants (5 females) with different heights

and weights to collect a wide range of body sounds. The partici-



Figure 9: Microphone and Suspension Capsules

Index Non-Speech Body Sound Description
1 Eating Eat a crunchy cookie
2 Eating Eat an apple
3 Eating Eat a piece of bread
4 Eating Eat a banana
5 Drinking Drink water
6 Deep Breathing Deeply breath
7 Clearing Throat Clear your throat
8 Coughing Cough
9 Sniffling Sniffle

10 Laugh Laugh aloud
Index Other Sounds Description

11 Silence Take a moment to relax
12 Speech Tell us about yourself

Table 2: The list of non-speech body sounds and other sounds
collected in this work

pants are asked to wear the BodyBeat neckpiece and to adjust the
position of the microphone so that it is placed beside the vocal
chord. The types of body sounds and a short description of each
task are listed in table 2. We also collected silence and human
speech sounds. Since our primary focus is detecting non-speech
body sounds, we treat silence and human speech sounds as sounds
that our classification algorithm should be able to recognize them
and filter them out. During data collection, all body sounds were
recorded with a sampling rate of 8kHz and a resolution of 16-bit.
In total, each of our participants contributed approximately 15
minutes of recordings.

To examine the acoustic characteristics of the collected body
sounds, we plot their corresponding spectrograms in Figure 10.
Spectrogram illustrates a visual representation of the frequency
spectrum in a sound as it varies with time. As a comparison,
the spectrograms of both silence and speech are also incorpo-
rated. As expected, silence spectrogram contains almost no energy
throughout the duration of the recording. On the other hand,
the spectrogram of speech contains significantly more energy due
to the vibration of vocal fold during speech utterances. Among
non-speech body sounds, the swallowing sound during drinking
generates a distinct frequency pattern. Coughing sound generates
two harmonic frequencies following a particular time varying pat-
tern in the spectrogram. When eating crispy hard foods (like chips),
chewing is much more pronounced and visible in the spectrogram
than that of soft food like bread. The frequency response of deep
breathing is much more powerful than that of normal breathing,
although both of the breathing variants follow similar trend (in
terms of changes of frequency distributino over time). Lastly, the
two spectrograms of eating soft food (bread) and normal breathing
(in Figure 10) follow a very similar trend.

Figure 10: The spectrograms of silence, speech, and non-speech
body sounds

4.2 Feature Extraction
The raw audio data sampled from the microphone was first

segmented into frames with uniform length and 50% overlap. The
length of the segmented frame is critical for the classification
procedure that follows. In this work, we considered the frame
length in the range from 16ms to 256ms. The optimal frame length
is determined empirically based on the classification performance.

To characterize body sounds, we employed a two-step feature
extraction procedure. In the first step, we extract a number of
acoustic features from each frame to construct frame-level features.
Acoustic features for analyzing human speech have been studied
extensively in the past decades. However, limited research has
been done to interpret non-speech body sounds. Therefore, in this
work, we include a standard set of acoustic features used in human
speech analysis and a number of other features that have been
demonstrated to perform well in capturing paralinguistic features
of vocal sounds. Table 3 lists all the frame-level features and their
corresponding acronyms. Specifically, the frame-level features
include 8 sub-band power features, RMS energy, zero crossing rate
(ZCR), 9 spectral features, 12 Mel Frequency Cepstral Coefficients
(MFCCs). Let us consider that the sampling frequency is fs (8000
hz). Now for extracting the 8 log subband power features, we divide
the spectrum into 8 subbands respectively having the following
frequency ranges (0, fs/256), (fs/256, fs/128), (fs/128, fs/64),
(fs/64, fs/32), (fs/32, fs/16), (fs/16, fs/8), (fs/8, fs/4),
(fs/4, fs/2). The first sub-band power represents the total power
in a very small frequency region from 0 to 31.25 Hz. From
the second sub-band, the bandwidth of each sub-band is twice
as much as that of the former sub-band. The logarithm (base
10) is applied to represent the power of each sub-band in a bel
scale. The spectral features are used to characterize different



Group Frame level descriptors Acronym

Energy
log power of 8 subbands LogSubband[i]
Total RMS Energy RMSenergy

Spectral

Spectral Centroid SpectCent
Spectral Flux SpectFlux
Spectral Variance SpectVar
Spectral Skewness SpectSkew
Spectral Kurtosis SpectKurt
Spectral Slope SpectSlope
Spectral Rolloff 25% SpectROff25
Spectral Rolloff 50% SpectROff50
Spectral Rolloff 75% SpectROff75
Spectral Rolloff 90% SpectROff90

Crossing Rate Zero Crossing Rate ZCR
MFCC 12 Mel Frequency Cepstral Coefficients mfcc[i]

Table 3: The list of frame-level features

Type Statistical Functions Acronym

Extremes
Minimum min
Maximum max

Average
Mean mean
Root Mean Square RMS
Median median

Quartiles 1st and 3rd Quartile qrtl1, qrtl3
Interquartile Range iqrl

Moments
Standard Deviation std
Skewness skew
Kurtosis kurt

Peaks
Number of peaks numOfPeaks
Mean Distance of Peaks meanDistPeaks
Mean Amplitude of Peaks meanAmpPeaks

Rate of Change Mean Crossing Rate mcr
Shape Linear Regression Slope slope

Table 4: The list of statistical functions applied to the frame-level
features for extracting window-level features

aspects of spectra including the ‘center of mass’ (spectral centroid),
‘change of spectra’ (spectral flux), ‘variance of the frequency’
(spectral variance), ‘skewness of the spectral distribution’ (spectral
skewness), ‘the shape of spectra’ (spectral slope, spectral rolloffs)
etc. Lastly, MFCC coefficients capture the Cepstral coefficients
using the source vocal tract model in speech signal processing.

Based on those extracted frame-level features, we grouped
frames into windows with much longer duration and extract fea-
tures at the window-level. We considered the window length in the
range of 1s–5s, also determined empirically based on the classifica-
tion performance. To extract window-level features, we applied a
set of statistical functions across all the frame-level features within
each window. Table 4 lists all the statistical functions applied to
the frame-level features within the window to capture different
aspect of the frame-level features. Specifically, the window-level
features capture the averages, extremes, rate of change, and shape
of the frame-level features within each window. For example, one
window-level feature is the mean value of the zero crossing rates
(ZCR) in frames, which is measured by at first estimating the ZCR
of individual frames and then calculating the arithmetic mean value
across all the ZCRs in a particular window. In total, we extracted
512 window-level features.

4.3 Feature Selection
The two-step feature extraction in the last section generates a

total of 512 features. Since we are going to implement the overall
feature extraction and classification framework on resource lim-
ited smartphone and wearable platform, it is not computationally
efficient to include all these features. Therefore, the goal is to
select a minimum number of features that achieve reasonably good
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Figure 11: Scatter plots in 2D feature spaces

classification performance. In our work, we use the correlation fea-
ture selection (CFS) algorithm to select the subset of features [13].
In general, the CFS algorithm evaluates the goodness of features
based on two criteria. First, the feature is highly indicative of
the target class. Second, the new feature select must be highly
uncorrelated with the features already selected. We used CFS
algorithm to select a set of 30 features.

From these 30 features we further select the most optimized
feature set for the target classifier. To do this, we run a se-
quential forward feature selection algorithm with the classifier’s
performance as criteria to select the top N best features. As a
classifier we used Linear Discriminative Classifier which will be
explained in further detail in Section 4.4. The best features selected
includes logSubband[1] std, logSubband[4] median, specQrtl25
min, logSubband[4] std, logSubband[5] qrtl75, logSubband[5]
numOfPeaks, ZCR std, logSubband[6] std, logSubband[6] mean,
specRoff50 meanCrossingRate, and logSubband[7] median.

To show the performance of these selected features, a series
of scatter plots in 2D feature space are shown in Figure 11 and
12. First, Figure 11a shows the scatter plot of silence and all
the body sound classes with respect to the two features: the
standard deviation of zero crossing rate and the log of first sub-band
power (logSubband[1] std). Silence typically consisted of low
energy random signal. The signal’s zero crossing rate and the
logSubband[1] does not vary much across frames. Thus, using
these two features, we can discriminate all body sounds from
silence. Figure 11b shows speech and all the body sounds in the
feature space of logSubband[4] median and logSubband[7] median.
As illustrated, speech signals contain much higher power in both of
the sub-bands. Thus, using these two features, we can discriminate
speech from all the body sounds considered for this study.

Figure 12 shows the difference among different body sounds
in different pairs of selected features. Figure 12a indicates that
eating sounds are fairly different from cough, laughter, and clearing
the throat in the 2 dimensional feature space of logSubband[4]
std and logSubband[5] qrtl75. Both of the features have the low
values for eating sounds. The 5th sub-band laughter contains
slightly higher energy than others. Figure 12b shows that the
most discriminative feature for separating eating from drinking is
logSubband[6] std. It means that the 6th sub-band’s log energy
varies more for the drinking sound than that of eating sounds.
Figure 12c shows that deep breathing sounds contain lower energy
in 6th sub-band. The standard deviation of the 4th sub-band’s log
energy also varies much less for deep breathing sounds compared
to cough and clearing throat.
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4.4 Classification
We use Linear Discriminant Classifier (LDC) as the classifi-

cation algorithm. We chose LDC over other classification algo-
rithms such as Support Vector Machine (SVM), Gaussian Mixture
Model (GMM) and Adaboost because LDC is also computa-
tionally efficient and lightweight enough to be implemented in
resource-limited smartphone. Table 5 shows the results of different
classifiers with different feature sets. We used two different cross-
validation experiments: a Leave-One-Person-Out (LOPO) and a
Leave-One-Sample-Out (LOSO) cross-validation experiment. The
LOPO cross-validation results are the most unbiased estimate of
our classifier’s performance, when the classifier is asked to detect
the body sounds of a new person that the classifier has not seen
before. In contrast, the LOSO cross-validation assumes that the
classifier is trained on the data collected from the target user.
The performance results from the LOSO cross-validation can be
thought as the ceiling performance of the system. The best
performance is achieved using LDC and energy, spectral features,
and MFCC is used to extract the initial set of window-level features
for selecting the top window-level features. The performance
reaches to 72.5 (average recall) and 63.4 (precision). Table 5 also
shows that with only energy and spectral features as frame-level
features, the LDC classifier can get a nice performance, which is
71.2 (recall), 61.5 (precision), and 66.5 (accuracy) from the LOPO
experiment. Moreover, if a user contributes some training data
towards making the classifier, the performance measure reaches to
88.1% recall (from LOSO experiment). Notice that losing MFCC
from our frame-level feature set does not affect the classifier’s
performance much (absolute reduction in terms of recall is 1.3 %),
but if we don’t have to extract MFCC features, that indicates that
we could save a lot of system’s resource in terms of power [22],
speed, and memory. Considering this factor, we decided to use just
energy and spectral features as frame-level features with LDC as
classifier for the rest of our analysis and system implementation.
Lastly, we also build the classification algorithm used by a recent
study [30] to compare with our proposed BodyBeat classification
algorithm. We find that our system outperforms BodyScope [30].
Lastly, table 6 shows the class level recall and precision from the
LOPO experiment this classifier.

The choice of both the frame and window size length used to
extract features significantly impacts classification performance. A
coarse frame or window size may not capture the local dynamic
(time variant) properties of the body sounds. On the other hand a
very fine frame or window may be prone to noise and thus may
decrease the discriminative properties of the features. We run
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Figure 13: shows the impact of (a) frame size (b) window size (c)
total number of features on the performance of classifier

this analysis to find the optimal frame and window size. Figure
13a and 13b shows the impact of the frame and window size
on the classifier’s performance. The frame size of 1024 samples
(125 milliseconds) and the window size of 3 seconds maximize
the classifier’s performance. The number of features selected
using the feature selection also plays a very important role on the
performance measure of the classifier. Figure 13c shows that the
performance measures in terms of recall, precision and F-measure
saturates when we use 10 window-level features.

5. SYSTEM IMPLEMENTATION
The BodyBeat non-speech body sound sensing mobile system is

implemented using an embedded system unit and an Android appli-
cation unit. The custom-made microphone of BodyBeat system is



LOPO LOSO
Frame-level Features R P F R P F

Energy & Spectral 71.2 61.5 66.5 88.1 81.9 86.5
MFCC 66.3 52.8 57.8 75.0 71.5 73.2

Energy & Spectral & MFCC 72.5 63.4 67.6 90.3 82.3 86.6
BodyScope[30] 57.6 55.5 56.5 76.6 71.5 73.8

Table 5: Classification performance in terms of Recall (R), Precision (P) and F-measure (F) based on both Leave-One-Person-Out (LOPO)
and a Leave-One-Sample-Out (LOSO) cross-validation

Eating Drinking Deep Breathing Clearing Throat Coughing Sniffling Laugh Silence Speech
Recall 70.35 72.09 64.09 68.75 80.00 75.00 61.90 74.38 81.06

Precision 73.29 57.21 60.95 61.11 62.07 58.00 61.90 61.66 84.69

Table 6: The Recall and Precision for each class from the LOPO experiment using LDC as classifier and energy and spectral features as
frame-level features

directly attached to the embedded system. The embedded system
unit utilizes an ARM microcontroller unit, an audio codec and a
Bluetooth module to implement capture, preprocessing and frame
admission control of the raw acoustic data from the microphone.
The Android application unit on the other hand implements the
two stage feature extraction, and inference algorithm. These two
units communicate with each other through Bluetooth. Figure 14
illustrates the system architecture of the overall system. In what
follows, we present the system implementation details of both the
embedded system unit and the Android application unit.

Figure 14: The Block Diagram of BodyBeat System Architecture

5.1 Embedded System Unit
At the center of the embedded system unit, we used a com-

mercially available Maple ARM microcontroller [4]. The board
consists of a 72MHz ARM cortex M3 chip with most of the
standard peripherals including digital and analog input/output
pins, 1 USB, and 3 Universal Asynchronous Receiver/Transmitters
(UARTs), and Serial Peripheral Interface (SPI). The clock speed,
advanced peripherals, and interrupt capabilities enables us to do
some rudimentary real-time audio signal processing and at the same
time to drive a Bluetooth codec to communicate with the Android
application unit.

As seen in Figure 14, the ARM microcontroller connects to an
audio codec via SPI [6]. The audio codec ([6]) contains a Wolfson
WM8731 chip. The audio codec receives the analog audio signal
using a 1/8 inch input jack and samples the audio with an array
sampling frequency up to 88000 Hz and with a resolution up to
24 bit/sample. The ARM unit is also connected with a class 2
Bluetooth ratio modem (commercially called BlueSMiRF Silver
[5]). The Bluetooth modem contains the RN-42 chip that receives
data from the ARM unit via UART and sends data to the Android
application with an SPP profile with a data rate of 115000bps. The
Bluetooth modem ensures reliable wireless connectivity with the
Android device up to a distance of 18 meters. A rechargeable LiPo
battery is used to power the ARM microcontroller, including the
audio codec and Bluetooth modem. Figure 15 shows the prototype
of embedded unit.

Audio	  Codec	  

ARM	  Microcontroller	  

Bluetooth	  Modem	  

Figure 15: The ARM Micro-Controller Unit

5.1.1 Audio Preprocessing
Audio preprocessing is the first step that happens in the ARM

microcontroller, which receives the digital samples of the Body-
Beat microphone’s analog audio stream by the Audio Codec. The
sampling frequency and bit resolution are chosen to be 8000Hz
and 16 bit, respectively, as it provides us with a detailed picture
of the audio and lowers the computational load of the system at
the same time. As the Audio Codec samples the analog audio
signal and sends a digital signal to the ARM microcontroller unit
via SPI, the interrupt in the ARM microcontroller unit collects the
data in a circular buffer. The audio data stored in the circular
buffer is then segmented with a frame length of 1024 samples
(125 milliseconds). While the interrupt fills the circular buffer,
the main thread essentially checks continuously if another 1024
samples has filled the circular buffer. Upon detecting the arrival
of a new frame, the ARM unit stars a RADIX-4 Complex Fast



Fourier Transformation (FFT) implementation, which is written
in C language [2]. The FFT implementation uses fixed-point
arithmetic with a sine table for optimizing speed by sacrificing
some memory. To prevent an arithmetic overflow, fixed scaling
is employed.

5.1.2 Frame Admission Control
The ARM microcontroller also does a frame admission control to

filter out audio frames that do not contain any body sounds. After
getting the FFT of the Hanning windowed audio frame of 1024
samples, we extracted a few important sub-band power and zero
crossing rate features to detect the presence of speech and silence.
In Figure 11, we already demonstrated how with a few features
we can filter out frames containing silence and speech. We took a
few measures to optimize our implementation in this regard. For
example, one of the features that we implemented in our ARM
microcontroller is logSubband[4] median. Floating point logarithm
calculation is heavy in terms of both CPU. We used a log table to
lower the CPU requirements by sacrificing some memory. When a
certain frame is detected not to contain any silence or speech, the
ARM microcontroller transfers the power spectrum of the current
frame to the Android unit. To asynchronously transfer different
frames, we send a preamble to mark the start of a frame.

5.2 Android Application Unit
The Android application unit, which is approximately 2200 lines

of Java, C, and C++ code, includes the input formatting of the
data, which is followed by feature extraction and classification.
The android unit implements a feature extraction and classification
algorithm in the native layer using C and C++ for faster execution.
The complete binary package including resource files is approxi-
mately 1280 KB.

5.2.1 Input formatting
The Android unit receives data via Bluetooth from the em-

bedded system unit as shown in Figure 14. This module used
the Android Bluetooth APIs to scan for other Bluetooth devices
around the phone, to fetch the information of the paired (or
already authenticated) remote Bluetooth modem in the embedded
system unit, and to establish wireless communication channel.
The Android application receives each frame asynchronously from
the embedded unit. The Android Bluetooth adapter continuously
looks for a four byte long preamble, which indicates the start of
a new frame is being sent by the embedded system unit. Upon
receiving the preamble, the input processing module continuously
stores all the received data in a temporary buffer. As soon as the
temporary buffer is full (received 513 samples, each 16 bit), the
input processing module takes all the data of the current frame
from the temporary buffer and updates a two dimensional circular
buffer. At the same time, the input processing unit starts to look
for another preamble indicating the start of another frame. This
preamble helps the Android application unit to receive each frame
of data separately. The two dimensional circular buffer is shared by
both the producer thread and the consumer thread as data storage
and data source. The two dimensional circular buffer stores each
frame’s data (513 samples) in a row. Thus, consecutive frame
data is stored in different rows in the two-dimensional circular
buffer. All the work in input processing happens in producer thread.
To facilitate the two dimensional circular buffer sharing by the
two threads, it includes two separate pointers for the two threads
(producer and consumer) at different rows of the two dimensional
circular buffer.

5.2.2 Feature Extraction and Classification
Once the two dimensional circular buffer contains 24 frames

of data (window length 3 seconds) for the feature extraction and
inference, the consumer thread passes the data to the native layer.
To ensure 50% overlap between two consecutive windows, the
consumer thread’s pointer moves to 16 rows to point to the new
frame. The entire feature extraction and classification algorithm is
implemented in the native layer considering the speed requirements
for real-time passive body sound sensing. Section 4 gives the
detailed description of the discriminative features for body sound
classification. The frame-level features are first extracted from
frame-level data. We used various statistical functions to extract
window-level features at this stage. The window-level features are
then used to infer the body sound. While implementing the feature
extraction and classification, we took several measures to optimize
power, CPU, and memory usage. We used additional memory
for lowering CPU load. All the memory blocks are pre-allocated
during the initialization of the Android application unit and are
shared across multiple native layer calls.

5.3 System Evaluation
In this section, we present the system evaluation of the BodyBeat

system. We first discuss CPU and memory benchmarks, which is
then followed by the detailed time and power benchmarks, includ-
ing both the embedded system unit and the Android application
unit. All the measurement of the Android application unit is done
with Google Nexus 4.

5.3.1 CPU and Memory Benchmarks

Status CPU Usage Memory Usage
Silence or speech 8-12% 45MB

Body Sound 15-22% 47MB

Table 7: CPU and Memory Benchmarks of the Android Applica-
tion Unit

Table 7 shows the CPU and memory benchmarks of our system.
When the BodyBeat microphone captures either silence or speech,
the Android application unit consumes less than 12% of the CPU
and 45 MB of memory, because of embedded system’s frame
admission control. During the presence of body sounds, the CPU
and memory usage increases and reaches up to 22% and 47 MB.

5.3.2 Time and Power Benchmarks
Figure 8 shows the average running time of different routines

in both the embedded system unit and Android application unit
for processing 3 seconds of audio from the BodyBeat microphone
that contains some body sound. In the embedded unit, the first
routine forms a frame of 1024 samples and multiplies it with the
Hanning windowing function to compensate Gibbs phenomena.
The framing only takes 5 milliseconds where the next process Fast
Fourier Transformation (FFT) takes 80 milliseconds. The frame
admission control takes up to 20 milliseconds.

The input processing in the Android application unit takes
the most of the time, as it includes the delay due to Bluetooth
communication. The feature extraction passes each frame (power
spectra received via Bluetooth, length 513 data) in the window to
the native layer to extract frame-level features. The frame-level
feature extraction takes a moderate amount of time, as this is one
of the most heavy routine in Android application unit. Lastly,
the window-level feature and classification takes only 5 and 1.5
milliseconds to run.



Unit Routine Time (ms)
Embedded Framing 5

FFT 80
Frame admission control 20

Android Input Processing 2448
Frame-level feature extraction 84

Window-level feature extraction 5
Classification 1.5

Table 8: Average running time of different routines in the ARM
microcontroller unit and the Android application unit to process 3
seconds (one window) of audio data containing some body sound

Routine Average Power (milliWatt)
Input Processing (IP) 343.74

IP & Feature Extraction (FE) 362.84
IP & FE & Classification 374.49

Table 9: The Power benchmarking of Android app unit

The embedded system unit consumes 256.64 milliwatt(mW)
when the system is waiting to be paired and connected with an
Android system. The embedded system unit consumes about 333.3
mW power while the raw audio data contains valuable body sounds
and the frame admission control allows the data to be transferred
to the Android system unit. On the other hand, when frame
admission control detects either silence or speech in the signal
and stops transmission of the data to Android unit, the embedded
system unit’s power consumption decreases to 289.971mW. Table
9 illustrates the average power (in milliwatt unit) consumed by dif-
ferent routines of the Android application unit. The average power
consumption by the Android application unit is about 374.49 mW,
when the application unit runs all the routines (input processing,
frame- and window-level feature extraction and classification).

6. POTENTIAL APPLICATIONS
An increasing number of mobile systems are bringing health

sensing to the masses. In this regard, we were inspired to build
a mobile system for sensing a wide range of non-speech body
sounds. By listening to the internal sounds that our bodies naturally
produce, we can continuously sense many medical and behavioral
problems in a wearable form factor. Here, we highlight some future
applications that can be developed with our BodyBeat sensor:

6.1 Food Journaling
Since BodyBeat can recognize eating and drinking sounds, it

has the potential to be used in food journaling applications. De-
spite technological advancements, developing automatic (or semi-
automatic) systems for food journaling is very challenging. For
example, the PlateMate [24] system demonstrated the feasibility
of using Amazon Mechanical Turk to label photographs of users’
meals with caloric information. However, this system required that
users actually remember to take a photo of what they eat. With
the invention of BodyBeat, you can imagine a future system that
detects when a user is eating. The system then either automatically
takes a picture of their food with a life-logging camera (e.g.
Microsoft SenseCam, Google Glass), or simply reminds the user
to take a photo of their food. Lastly, it uploads the image to
Mechanical Turk for caloric labeling.

6.2 Illness Detection
The BodyBeat system allows us to detect coughing, deep or

heavy breathing, which can be indicative of many pulmonary

diseases. While a few previous studies have illustrated success
detecting these body sounds indicative of illness (e.g. [17, 30]),
BodyBeat mobile system can be used in an application which
will detect the onset, frequency, and the location of coughing,
heavy breathing or any other kind of pulmonary sounds. As
sensing devices become more ubiquitous, cough detection could
allow us to track the spread of illnesses, with similar motivation
to TwitterHealth research [27]. In future work, we plan to work
with medical doctors to expand the BodyBeat system to detect
other body sounds of interest, such as sneezing and specific types
of coughing (e.g., wheezing, dry cough, productive cough).

7. RELATED WORK
The microphone is a rich sensor stream that contains information

about our surroundings and us. Many studies proposed mobile
systems that leverage the smartphone’s built-in microphone to infer
the surroundings of a person [21], physiological state (sleep [14],
cough [17]), and psychological state (stress [20]). A recent study
proposed Aditeur, a mobile system that detects audio events in
real-time using the phone’s built-in microphone, backed by a cloud
service[22]. Such mobile systems are becoming very popular
in the mobile health domain, especially among clinicians and
patients for detection of disease, monitoring of health variables,
etc. [16]. However, the smartphone’s built-in microphone (typi-
cally a condenser) is actually optimized for capturing speech. It
is difficult to capture subtle non-speech body sounds because of
the placement of the smartphone and external noise levels. A few
recent studies proposed contact microphone designs. Hirahara et
al. proposed a customized microphone with Eurathane elastomer
designed to capture non-audible murmur, which is a very weak
whispered voice [15]. Various contact microphones are also used
in music industry that are designed to directly capture vibrations
from musical instruments [1]. None of these contact microphones
are not designed and optimized to capture subtle body sounds.

Yatani and Khai [30] proposed BodyScope, a wearable neck-
piece with a standard condenser microphone augmented with a
stethoscope head, in order to capture an array of body sounds
to predict activity. In our study, we designed and implemented
a customized microphone based on piezo-electric sensor that are
optimized for subtle body sounds. We also propose a neckpiece that
is designed with a consideration on the microphone’s longer-term
wearability and users’ comfort. The neckpiece also employ a
suspension mechanism to compensate friction noise due to user’s
body movement. Body sounds are a fundamental source of health
information and are being used by physicians since almost the
beginning of modern medical science [18]. Due to the subtle nature
of body sounds, it is difficult to reliably and passively capture
body sound signals with a built-in smartphone microphone. As a
result, some studied have explored the feasibility of a customized-
wearable microphone for recognizing eating behaviors, breathing
patterns, etc. Amft and Troster [10] used a combination of sensors
to model eating behavior. They modeled hand gestures with inertial
sensors in users’ hands; chewing with ear attached microphones;
and swallowing with rubber elongation sensors in the throat areas.
Recent studies also tried to detect different eating sounds collected
from a tri-axial accelerometer implanted inside teeth and using
textile neckband [19, 11]. The scalability of this approach might be
significantly constricted because of the sensor placement, which is
close to oral activity. Another study used the built-in microphone of
a hearing aid to recognize chewing events [25]. Some studies have
used off-the-shelf bone conduction and condenser microphones to
capture audio of eating and then classify the type of food consume
and mastication counts [9, 8, 28]. Body vibration captured by



inertial sensors have also been used to estimate heartbeat [23].
The recent studies in the literature are mostly confined to offline
exploration of discriminative acoustic features and machine learn-
ing. In addition, most studies did not provide information about
the implementation of the signal processing and machine learning
algorithms in resource-limited hardware. In our work, we presented
the implementation of our signal processing and machine learning
algorithms in the context of a distributed system, consisting of an
ARM micro-controller and an Android phone. We compared our
algorithms to baseline algorithms, and we also presented the results
from the CPU, memory, and power benchmarking experiments.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented the design, implementation and

evaluation of BodyBeat, a wearable sensing system that captures
and recognizes non-speech body sounds. We have described the
design of our custom-built piezoelectric sensor-based microphone
and showed that our microphone outperforms other existing solu-
tions in capturing non-speech body sounds. In addition, we have
developed a classification algorithm based on a set of carefully
selected features and achieved an average classification average
recall of 71.2%. Finally, we have implemented BodyBeat and
benchmarked its performance.

In the future, we plan to reduce the form factor of BodyBeat to
improve its wearability and minimize its obtrusiveness to users. We
also want to keep exploring the potential of BodyBeat on detecting
other non-speech body sounds. We also aim to process non-speech
body sounds at a lower sampling rate and run the end-to-end
evaluation of the system. Finally, based on the promising results
reported in this paper, we plan to bring BodyBeat to life by
deploying it in the aforementioned applications.
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